Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Res ; 246: 120742, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37857010

RESUMEN

Partial nitrification (PN) and high glycogen accumulating metabolism (GAM) activity are the basis for efficient nitrogen (N) and phosphorus (P) removal in simultaneous nitrification endogenous denitrification and phosphorus removal (SNDPR) systems. However, achieving these processes in practical operations is challenging. This study proposes that light irradiation is a novel strategy to enhance the nutrient removal performance of the SNDPR system with low carbon to nitrogen ratios (C/N of 3.3-4.1) domestic wastewater. Light energy densities (Es) of 55-135 J/g VSS were found to promote the activity of ammonia-oxidizing bacteria (AOB) and GAM, while inhibiting the activity of nitrite-oxidizing bacteria (NOB) and polyphosphate accumulating metabolism (PAM). Long-term exposure to different light patterns at Es of 55-135 J/g VSS revealed that continuous light rapidly achieved PN by inhibiting NOB activity and promoted the growth of glycogen accumulating organisms (GAOs), allowing the removal of above 82 % N and below 80 % P. Intermittent light maintained stable PN by inhibiting the activity and growth of NOB and promoted the growth of polyphosphate accumulating organisms (PAOs) with high GAM activity (Accmulibacer IIC-ii and IIC-iii), allowing the removal of above 82 % N and 95 % P. Flow cytometry and enzyme activity assays showed that light promoted GAM-related enzyme activity and the metabolic activity of partial Accmulibacer II over other endogenous denitrifying bacteria, while inhibiting NOB translation activity. These findings provide a new approach for enhancing nutrient removal, especially for achieving PN and promoting GAM activity, in SNDPR systems treating low C/N ratio domestic wastewater using light irradiation.


Asunto(s)
Nitrificación , Aguas Residuales , Desnitrificación , Fósforo/metabolismo , Eliminación de Residuos Líquidos , Reactores Biológicos/microbiología , Nitrógeno/metabolismo , Bacterias/metabolismo , Glucógeno/metabolismo , Nitritos/metabolismo , Polifosfatos/metabolismo , Aguas del Alcantarillado
2.
Environ Res ; 213: 113653, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35691384

RESUMEN

Different from anammox, the combination of Fe (III) reduction coupled to anaerobic ammonium oxidation (Feammox) and nitrate/nitrite dependent ferrous oxidation (NDFO) do not require to control nitrite accumulation. Furthermore, sponge iron can avoid continuous iron supplementation in practice and is a good iron source for the occurrence of Feammox and NDFO in wastewater treatment. Therefore, a biofilter using sponge iron as carrier treating low nitrogen wastewater was built. In this study, the performances of nitrogen removal were explored under different hydraulic retention times (HRT) and gas-water ratios in sponge iron biofilter. And the pathways of nitrogen removal were analyzed by activity tests. The results showed ammonia removal efficiency reached 94.1% and total inorganic nitrogen removal efficiency was up to 70.6% at HRT of 19 h and gas-water ratio of 18. Compared to nitrogen removal by adsorption under non-aeration, the activity tests showed that total inorganic nitrogen loss was caused by Feammox and NDFO after aeration. The results of microbial communities showed that appearances of nitrifier-Nitrosomonadaceae, Feammox bacteria-Clostridiaceae and NDFO bacteria-Gallionellaceae resulted in deep nitrogen removal after aeration, in which Nitrosomonadaceae and Clostridiaceae contributed to ammonia removal and Gallionellaceae contributed to nitrite/nitrate reduction to nitrogen gas. Therefore, it was feasible to achieve deep autotrophic nitrogen removal and Fe (II) and Fe (III) cycle in sponge iron biofilter.


Asunto(s)
Desnitrificación , Nitrógeno , Amoníaco , Anaerobiosis , Reactores Biológicos , Hierro , Nitratos , Nitritos , Óxidos de Nitrógeno , Oxidación-Reducción , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA