Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sci Total Environ ; 927: 172424, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614348

RESUMEN

Atmospheric nitrogen (N) deposition inevitably alters soil nutrient status, subsequently prompting plants to modify their root morphology (i.e., adopting a do-it-yourself strategy), mycorrhizal symbioses (i.e., outsourcing strategy), and root exudation (i.e., nutrient-mining strategy) linking with resource acquisition. However, how N deposition influences the integrated pattern of these resource-acquisition strategies remains unclear. Furthermore, most studies in forest ecosystems have focused on understory N and inorganic N deposition, neglecting canopy-associated processes (e.g., N interception and assimilation) and the impacts of organic N on root functional traits. In this study, we compared the effects of canopy vs understory, organic vs inorganic N deposition on eight root functional traits of Moso bamboo plants. Our results showed that N deposition significantly decreased arbuscular mycorrhizal fungi (AMF) colonization, altered root exudation rate and root foraging traits (branching intensity, specific root area, and length), but did not influence root tissue density and N concentration. Moreover, the impacts of N deposition on root functional traits varied significantly with deposition approach (canopy vs. understory), form (organic vs. inorganic), and their interaction, showing variations in both intensity and direction (positive/negative). Furthermore, specific root area and length were positively correlated with AMF colonization under canopy N deposition and root exudation rate in understory N deposition. Root trait variation under understory N deposition, but not under canopy N deposition, was classified into the collaboration gradient and the conservation gradient. These findings imply that coordination of nutrient-acquisition strategies dependent on N deposition approach. Overall, this study provides a holistic understanding of the impacts of N deposition on root resource-acquisition strategies. Our results indicate that the evaluation of N deposition on fine roots in forest ecosystems might be biased if N is added understory.


Asunto(s)
Micorrizas , Nitrógeno , Raíces de Plantas , Raíces de Plantas/metabolismo , Nitrógeno/metabolismo , Micorrizas/fisiología , Suelo/química , Bosques , China , Simbiosis , Sasa
2.
Artículo en Inglés | MEDLINE | ID: mdl-37089712

RESUMEN

The survival rate of lung cancer patients remains low largely due to chemotherapy resistance during treatment, and cancer stem cells (CSCs) may hold the key to targeting this resistance. Cisplatin is a chemotherapy drug commonly used in cancer treatment, yet the mechanisms of intrinsic cisplatin resistance have not yet been determined because lung CSCs are hard to identify. In this paper, we proposed a mechanism relating to the function of ursolic acid (UA), a new drug, in reversing the cisplatin resistance of lung cancer cells regulated by CSCs. Human lung cancer cell line A549 was selected as the model cell and treated to become a cisplatin-resistant lung cancer cell line (A549-CisR), which was less sensitive to cisplatin and showed an enhanced capability of tumor sphere formation. Furthermore, in the A549-CisR cell line expression, levels of pluripotent stem cell transcription factors Oct-4, Sox-2, and c-Myc were increased, and activation of the Jak2/Stat3 signaling pathway was promoted. When UA was applied to the cisplatin-resistant cells, levels of the pluripotent stem cell transcription factors were restrained by the inhibition of the Jak2/Stat3 signaling pathway, which reduced the enrichment of tumor stem cells, and in turn, reversed cisplatin resistance in lung cancer cells. Hence, as a potential antitumor drug, UA may be able to inhibit the enrichment of the lung CSC population by inhibiting the activation of the Jak2-Stat3 pathway and preventing the resistance of lung cancer cells to cisplatin.

3.
J Hazard Mater ; 452: 131222, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-36989793

RESUMEN

The co-presence of chromium (VI) [Cr(VI)] and uranium (VI) [U(VI)] is widely found in groundwater, imposing severe risks on human health. Although zerovalent iron [Fe(0)] supports superb performance for bioreduction of Cr(VI) and U(VI) individually, the biogeochemical process involving their concurrent removal with Fe(0) as electron donor remains unexplored. In the 6-d batch study, 86.1% ± 0.7% of Cr(VI) was preferentially eliminated, while 78.4% ± 0.5% of U(VI) removal was achieved simultaneously. Efficient removal of Cr(VI) (100%) and U(VI) (51.2% ∼ 100%) was also obtained in a continuous 160-d column experiment. As a result, Cr(VI) and U(VI) were reduced to less mobile Cr(III) and insoluble U(IV), respectively. 16 S rRNA sequencing was performed to investigate the dynamics of microbial community. Delftia, Acinetobacter, Pseudomonas and Desulfomicrobium were the major contributors mediating the bioreduction process. The initial Cr(VI) and hydraulic retention time (HRT) incurred pronounced effects on community diversity, which in turn altered the reactor's performance. The enrichment of Cr(VI) resistance (chrA), U(VI) reduction (dsrA) and Fe(II) oxidation (mtrA) genes were observed by reverse transcription qPCR. Cytochrome c, glutathione and NADH as well as VFAs and gas metabolites also involved in the bioprocess. This study demonstrated a promising approach for removing the combined contaminants of Cr(VI) and U(VI) in groundwater.


Asunto(s)
Agua Subterránea , Uranio , Humanos , Descontaminación , Cromo/metabolismo , Oxidación-Reducción
4.
Water Res ; 233: 119778, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36871383

RESUMEN

Zerovalent iron [Fe(0)] can donate electron for bioprocess, but microbial uranium (VI) [U(VI)] reduction driven by Fe(0) is still poorly understood. In this study, Fe(0) supported U(VI) bio-reduction was steadily achieved in the 160-d continuous-flow biological column. The maximum removal efficiency and capacity of U(VI) were 100% and 46.4 ± 0.52 g/(m3·d) respectively, and the longevity of Fe(0) increased by 3.09 times. U(VI) was reduced to solid UO2, while Fe(0) was finally oxidized to Fe(III). Autotrophic Thiobacillus achieved U(VI) reduction coupled to Fe(0) oxidation, verified by pure culture. H2 produced from Fe(0) corrosion was consumed by autotrophic Clostridium for U(VI) reduction. The detected residual organic intermediates were biosynthesized with energy released from Fe(0) oxidation and utilized by heterotrophic Desulfomicrobium, Bacillus and Pseudomonas to reduce U(VI). Metagenomic analysis found the upregulated genes for U(VI) reduction (e.g., dsrA and dsrB) and Fe(II) oxidation (e.g., CYC1 and mtrA). These functional genes were also transcriptionally expressed. Cytochrome c and glutathione responsible for electron transfer also contributed to U(VI) reduction. This study reveals the independent and synergistic pathways for Fe(0)-dependent U(VI) bio-reduction, providing promising remediation strategy for U(VI)-polluted aquifers.


Asunto(s)
Hierro , Uranio , Hierro/metabolismo , Oxidación-Reducción , Transporte de Electrón , Citocromos c/metabolismo
5.
Ying Yong Sheng Tai Xue Bao ; 33(5): 1233-1239, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35730081

RESUMEN

Removal of invasive plant species is the first step to restoring the invaded ecosystems. The soil microbial biomass and extracellular enzyme activities were measured in Moso bamboo (Phyllostachys edulis) pure forest (completely invasion), invasive P. edulis removal forest (secondary succession 5 years after clear cutting), and the evergreen broadleaved forest (no invasion) in Tianmu Mountain. The results showed that compared with P. edulis pure forest, invasive P. edulis removal significantly increased the contents of soil organic carbon (SOC), nitrate nitrogen, available phosphorus and potassium, as well as microbial biomass carbon (MBC) and microbial biomass phosphorus (MBP), while significantly decreased microbial biomass nitrogen (MBN). The activities of α-glucosidase (AG), ß-glucosidase (BG), leucine aminopeptidase (LAP) and phenol oxidase (POX) in the forest with removal of invasive P. edulis were significantly higher than those in P. edulis pure forest, while invasive P. edulis removal did not change the activities of cellodisaccharide hydrolase (CBH), ß-N-acetyl-glucosaminopeptidase (NAG), acid phosphatase (ACP) and peroxidase (PER). Furthermore, the activities of AG, BG and LAP were positively correlated with SOC and MBC, while the increase in POX activity was positively correlated with soil nitrate content. In addition, MBC, MBN and MBP, and activities of AG, BG, NAG, LAP and ACP in P. edulis removal forest forest were significantly higher than those in evergreen broadleaved forests. Taken together, the removal of invasive P. edulis could increase soil nutrient contents, microbial biomass and extracellular enzyme activities, thus could be considered as an effective way to restore the invaded forests. Our results provide important theoretical basis for controlling P. edulis invasion in subtropical forests.


Asunto(s)
Carbono , Suelo , Fosfatasa Ácida , Biomasa , Carbono/análisis , China , Ecosistema , Bosques , Especies Introducidas , Nitratos , Nitrógeno/análisis , Compuestos Orgánicos , Fósforo , Poaceae , Microbiología del Suelo
6.
Water Res ; 216: 118326, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35364351

RESUMEN

Chromate [Cr(VI)] and pentachlorophenol (PCP) coexist widely in the environment and are highly toxic to public health. However, whether Cr(VI) bio-reduction is accompanied by PCP bio-degradation and how microbial communities can keep long-term stability to mediate these bioprocesses in aquifer remain elusive. Herein, we conducted a 365-day continuous column experiment, during which the concurrent removals of Cr(VI) and PCP were realized under anaerobic condition. This process allowed for complete Cr(VI) bio-reduction and PCP bio-degradation at an efficiency of 92.8 ± 4.2% using ethanol as a co-metabolic substrate. More specifically, Cr(VI) was reduced to insoluble chromium (III) and PCP was efficiently dechlorinated with chloride ion release. Collectively, Acinetobacter and Spirochaeta regulated Cr(VI) bio-reduction heterotrophically, while Pseudomonas mediated not only Cr(VI) bio-reduction but also PCP bio-dechlorination. The bio-dechlorinated products were further mineralized by Azospira and Longilinea. Genes encoding proteins for Cr(VI) bio-reduction (chrA and yieF) and PCP bio-degradation (pceA) were upregulated. Cytochrome c and intracellular nicotinamide adenine dinucleotide were involved in Cr(VI) and PCP detoxification by promoting electron transfer. Taken together, our findings provide a promising bioremediation strategy for concurrent removal of Cr(VI) and PCP in aquifers through bio-stimulation with supplementation of appropriate substrates.


Asunto(s)
Agua Subterránea , Pentaclorofenol , Anaerobiosis , Biodegradación Ambiental , Cromatos , Cromo/metabolismo , Oxidación-Reducción , Pentaclorofenol/metabolismo
7.
J Hazard Mater ; 422: 126932, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34419844

RESUMEN

Elevated selenium levels in the environment, with soluble selenate [Se(VI)] as the common chemical species, pose a severe threat to human health. Anaerobic Se(VI) bioreduction is a promising approach for selenium detoxification, and various organic/inorganic electron donors have proved effective in supporting this bioprocess. Nevertheless, autotrophic Se(VI) bioreduction driven by solid inorganic electron donors is still not fully understood. This work is the first to employ elemental sulfur [S(0)] as electron donor to support Se(VI) bioreduction. A batch trial with mixed culture demonstrated the feasibility of this bioprocess, with Se(VI) removal efficiency of 92.4 ± 0.7% at an initial Se(VI) concentration of 10 mg/L within 36 h. Continuous column tests showed that increased initial concentration, flow rate, and introduction of NO3--N depressed Se(VI) removal. Se(VI) was mainly bioreduced to solid elemental Se with trace selenite in the effluent, while S(0) was oxidized to SO42-. Enrichment of Thiobacillus, Desulfurivibrio, and Sulfuricurvum combined with upregulation of genes serA, tatC, and soxB indicated Se(VI) bioreduction was coupled to S(0) oxidation. Thiobacillus performed S(0) oxidation and Se(VI) reduction independently. Intermediate metabolites as volatile fatty acids, hydrogen and methane from S(0) oxidation were utilized by heterotrophic Se(VI) reducers for Se(VI) detoxification, indicative of microbial synergy.


Asunto(s)
Compuestos de Selenio , Selenio , Humanos , Oxidación-Reducción , Ácido Selénico , Ácido Selenioso , Azufre
8.
Chemosphere ; 288(Pt 2): 132539, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34648787

RESUMEN

Uranium and vanadium commonly co-exist in groundwater aquifer where uranium was smelted from vanadium tailings. However, little is known about interrelationships of U(VI) and V(V) during their bio-reduction processes. In this work, 92.7 ± 1.52% U(VI) and 100% V(V) were simultaneously removed with sodium acetate as the sole exogenous electron donor and carbon source under anaerobic condition. Various conditions (i.e., increased uranium, reduced hydraulic retention time and acetate) were observed to affect removal efficiencies. Characterization of column fillings indicated that U(VI) was precipitated to U(IV) and V(V) was reduced to insoluble V(IV). Microbial community structure was observed to change, where Aquabacterium and Hydrogenophaga promoted bioreductions of U(VI) and V(V). Enriched Novosphingobium and Rhodobacter also played a vital role in reducing U(VI) and V(V). These findings could be used to study the biogeochemical fates of U(VI) and V(V) in the aquifer and to remediate groundwater co-contaminated by U(VI) and V(V).


Asunto(s)
Agua Subterránea , Uranio , Vanadio
9.
Environ Pollut ; 289: 117839, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34340179

RESUMEN

Indigenous microbial consortia are closely associated with soil inherent components including nutrients and minerals. Although indigenous microbial consortia present great prospects for bioremediation of vanadate [V(V)] contaminated soil, influences of some key components, such as available phosphorus (AP), on V(V) biodetoxification are poorly understood. In this study, surface soils sampled from five representative vanadium smelter sites were employed as inocula without pretreatment. V(V) removal efficiency ranged from 81.7 ± 1.4% to 99.5 ± 0.2% in batch experiment, and the maximum V(V) removal rates were positively correlated with AP contents. Long-term V(V) removal was achieved under fluctuant hydrodynamic and hydrochemical conditions in column experiment. Geobacter and Bacillus, which were found in both original soils and bioreactors, catalytically reduced V(V) to insoluble tetravalent vanadium. Phosphate-solubilizing bacterium affiliated to Gemmatimonadaceae were also identified abundantly. Microbial functional characterization indicated the enrichment of phosphate ABC transporter, which could accelerate V(V) transfer into intercellular space for efficient reduction due to the structural similarity of V(V) and phosphate. This study reveals the critical role of AP in microbial V(V) decontamination and provides promising strategy for in situ bioremediation of V(V) polluted soil.


Asunto(s)
Contaminantes del Suelo , Suelo , Biodegradación Ambiental , Descontaminación , Consorcios Microbianos , Fósforo , Microbiología del Suelo , Contaminantes del Suelo/análisis , Vanadatos
10.
J Hazard Mater ; 418: 126339, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34118535

RESUMEN

The co-occurrence of toxic pyridine (Pyr) and vanadium (V) oxyanion [V(V)] in aquifer has been of emerging concern. However, interactions between their biogeochemical fates remain poorly characterized, with absence of efficient route to decontamination of this combined pollution. In this work, microbial-driven Pyr degradation coupled to V(V) reduction was demonstrated for the first time. Removal efficiencies of Pyr and V(V) reached 94.8 ± 1.55% and 51.2 ± 0.20% in 72 h operation. The supplementation of co-substrate (glucose) deteriorated Pyr degradation slightly, but significantly promoted V(V) reduction efficiency to 84.5 ± 0.635%. Pyr was mineralized with NH4+-N accumulation, while insoluble vanadium (IV) was the major product from V(V) bio-reduction. It was observed that Bacillus and Pseudomonas realized synchronous Pyr and V(V) removals independently. Interspecific synergy between Pyr degraders and V(V) reducers also functioned with addition of co-substrate. V(V) was bio-reduced through alternative electron acceptor pathway conducted by gene nirS encoded nitrite reductase, which was evidenced by gene abundance and enzyme activity. Cytochrome c, nicotinamide adenine dinucleotide and extracellular polymeric substances also contributed to the coupled bioprocess. This work provides new insights into biogeochemical activities of Pyr and V(V), and proposes novel strategy for remediation of their co-contaminated aquifer.


Asunto(s)
Agua Subterránea , Vanadio , Anaerobiosis , Oxidación-Reducción , Piridinas
11.
Sci Total Environ ; 768: 145331, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33736316

RESUMEN

Selenate [Se(VI)] with higher content in groundwater will be harmful for human beings. Hence, effective treatment for Se(VI) in aquifer should be conducted reasonably. Microbial reduction of Se(VI) to elemental selenium with weak movability and toxicity has attracted significant attention due to its high efficiency and no secondary contamination. However, hydrodynamic and hydrochemical influences with corresponding mechanisms during Se(VI) bioreduction are still not clear. In this study, influences of flow rate, initial Se(VI) and organic concentrations, coexisting nitrate were evaluated. Se(VI) removal efficiency and capacity reached 96.42 ± 6.82% and 41.28 ± 3.41 (g/m3·d) with flow rate of 0.56 mL/min, initial Se(VI) and chemical organic demand concentrations of 10 mg/L and 400 mg/L. Dechloromonas and Pseudomonas were presumably contributed to Se(VI) reduction, with upregulated serA and tatC genes. Solid Se0 was identified as the final product from Se(VI) reduction. These results will be beneficial for the further comprehending of Se(VI) remediation in aquifer.


Asunto(s)
Agua Subterránea , Compuestos de Selenio , Selenio , Humanos , Hidrodinámica , Nitratos , Ácido Selénico
12.
Int Immunopharmacol ; 81: 106272, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32062074

RESUMEN

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. However, the pathogenesis of RA is not fully understood. Here, we reported that c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1, also known as JNK-interacting protein 3 (JIP3)) was significantly important for collagen-induced arthritis (CIA) in mice. Mice with JIP3 knockout (JIP3-/-) showed a significant decrease in arthritis index and swollen joint count in CIA mice. The histopathology of spleen and joint was markedly alleviated by JIP3 deficiency in CIA mice. Excessive macrophage activation in CIA mice was also inhibited by JIP3 deletion. CIA-induced RANKL/RANK/OPG system mRNA expression was blocked in JIP3-knockout mice. In addition, CIA-triggered cytokine secretion and TLRs/NF-κB activation was inactivated by JIP3-deficiency. In line with the inhibition of inflammation by JIP3-knockout, it also significantly suppressed JNK pathway activation induced by CIA, as evidenced by the down-regulation of p-JNK, p-c-Jun, AFT-2 and Elk-1 in joints. In vitro, RANKL-exposed RAW264.7 cells showed a significant reduction of osteoclast formation using TRAP staining. Moreover, JIP3 inhibition reduced the RANKL-caused expression of osteoclastic genes and inflammatory regulators, as well as activation of TLRs/NF-κB and JNK signaling pathways. Importantly, we found that promoting JNK activity could abrogate JIP3 knockdown-suppressed osteoclastic genes expression, inflammatory response and NF-κB activation. These findings suggested that JIP3 could significantly impede osteoclast formation and function by regulating JNK activation, illustrating a novel therapeutic strategy for managing arthritis and preventing bone destruction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Artritis Experimental/inmunología , Artritis Reumatoide/inmunología , MAP Quinasa Quinasa 4/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Osteoclastos/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Inflamación , Activación de Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/genética , Células RAW 264.7
13.
Mol Plant Pathol ; 21(5): 636-651, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32077242

RESUMEN

Copper-based antimicrobial compounds are widely and historically used to control plant diseases, such as late blight caused by Phytophthora infestans, which seriously affects the yield and quality of potato. We previously identified that copper ion (Cu2+ ) acts as an extremely sensitive elicitor to induce ethylene (ET)-dependent immunity in Arabidopsis. Here, we found that Cu2+ induces the defence response to P. infestans in potato. Cu2+ suppresses the transcription of the abscisic acid (ABA) biosynthetic genes StABA1 and StNCED1, resulting in decreased ABA content. Treatment with ABA or inhibitor fluridone made potato more susceptible or resistance to late blight, respectively. In addition, potato with knockdown of StABA1 or StNCED1 showed greater resistance to late blight, suggesting that ABA negatively regulates potato resistance to P. infestans. Cu2+ also promotes the rapid biosynthesis of ET. Potato plants treated with 1-aminocyclopropane-1-carboxylate showed enhanced resistance to late blight. Repressed expression of StEIN2 or StEIN3 resulted in enhanced transcription of StABA1 and StNCED1, accumulation of ABA and susceptibility to P. infestans. Consistently, StEIN3 directly binds to the promoter regions of StABA1 and StNCED1. Overall, we concluded that Cu2+ triggers the defence response to potato late blight by activating ET biosynthesis to inhibit the biosynthesis of ABA.


Asunto(s)
Cobre/farmacología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Ácido Abscísico/farmacología , Etilenos/metabolismo , Fungicidas Industriales/farmacología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Phytophthora infestans/patogenicidad , Proteínas de Plantas/genética , Piridonas/farmacología , Solanum tuberosum/microbiología
14.
Bioresour Technol ; 159: 272-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24657758

RESUMEN

To enhance the denitrification performance of soil infiltration, a soil infiltration system incorporated with sulfur-utilizing autotrophic denitrification (SISSAD) for domestic wastewater treatment was developed, and the SISSAD performance was evaluated using synthetic domestic wastewater in this study. The aerobic respiration and nitrification were mainly taken place in the upper aerobic stage (AES), removed 88.44% COD and 89.99% NH4(+)-N. Moreover, autotrophic denitrification occurred in the bottom anaerobic stage (ANS), using the CO2 produced from AES as inorganic carbon source. Results demonstrated that the SISSAD showed a remarkable performance on COD removal efficiency of 95.09%, 84.86% for NO3(-)-N, 95.25% for NH4(+)-N and 93.15% for TP. This research revealed the developed system exhibits a promising application prospect for domestic wastewater in the future.


Asunto(s)
Procesos Autotróficos , Desnitrificación , Suelo/química , Azufre/metabolismo , Aguas Residuales/microbiología , Purificación del Agua/métodos , Compuestos de Amonio/aislamiento & purificación , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos/microbiología , Concentración de Iones de Hidrógeno , Nitratos/aislamiento & purificación , Nitritos/aislamiento & purificación , Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Sulfatos/aislamiento & purificación , Purificación del Agua/instrumentación
15.
Bioresour Technol ; 132: 190-6, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23411447

RESUMEN

The behavior of total phosphorus removal was investigated in present study in sequencing batch biofilm reactor (SBBR) controlled by an intelligent control system (ICS) with less energy consumption for municipal wastewater treatment. Stable total phosphorus (TP) removal efficiency of 93.9 ± 2.2% was achieved in comparison to that of 93.3 ± 2.5% in a conventional timer control system (TCS-SBBR). Significant anaerobic phosphorus release was not observed in ICS-SBBR, which was unlike the conventional TCS-SBBR. Moreover, lower accumulations/transformations of polyhydroxyalkanoates (PHAs) and higher transformation of glycogen occurred in the ICS-SBBR, indicating that PHAs was the main energy source while glycogen played a supporting role when PHAs were inadequate, which was different from the traditional mechanism of biological phosphorus removal in TCS-SBBR. The possible biochemical metabolism of phosphorus removal in ICS-SBBR was also elucidated.


Asunto(s)
Biopelículas , Reactores Biológicos , Fósforo/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Análisis de la Demanda Biológica de Oxígeno , China , Oxígeno/análisis , Fósforo/metabolismo , Polihidroxialcanoatos/metabolismo , Espectrofotometría Ultravioleta , Temperatura , Eliminación de Residuos Líquidos/instrumentación , Purificación del Agua/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA