Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Biodivers ; 21(5): e202400098, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38462532

RESUMEN

Curcumae Radix (CuR) is a traditional Chinese medicine that has been used in China for more than 1,000 years. It has the traditional efficacy of activating blood and relieving pain, promoting qi and relieving depression, clearing heart and cooling blood, and promoting gallbladder and removing jaundice. Based on this, many domestic and foreign scholars have conducted systematic studies on its chemical composition, pharmacological effects, toxicity and quality control. Currently, 250 compounds, mainly including terpenoids and curcuminoids, have been isolated and identified from CuR, which has pharmacological activities, including antitumor, anti-inflammatory and analgesic, antidepressant, hepatoprotective, hemostatic, hematopoietic, and treatment of diabetes mellitus. In modern clinical practice, CuR is widely used in the treatment of tumors, breast hyperplasia, hepatitis, and stroke. However, the generation of toxicity and clinical application of CuR and Caryophylli Flos, the determination of the concoction process of artifacts, the determination of specific Quality Marker, and the establishment of the quality control system of CuR, are problems that need to be solved urgently at present.


Asunto(s)
Curcuma , Control de Calidad , Humanos , Curcuma/química , Medicina Tradicional China , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/aislamiento & purificación , Animales , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación
2.
Arch Pharm Res ; 47(3): 165-218, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38493280

RESUMEN

Astragali Radix (A. Radix) is the dried root of Astragalus membranaceus var. mongholicus (Bge) Hsiao or Astragalus membranaceus (Fisch.) Bge., belonging to the family Leguminosae, which is mainly distributed in China. A. Radix has been consumed as a tonic in China for more than 2000 years because of its medicinal effects of invigorating the spleen and replenishing qi. Currently, more than 400 natural compounds have been isolated and identified from A. Radix, mainly including saponins, flavonoids, phenylpropanoids, alkaloids, and others. Modern pharmacological studies have shown that A. Radix has anti-tumor, anti-inflammatory, immunomodulatory, anti-atherosclerotic, cardioprotective, anti-hypertensive, and anti-aging effects. It has been clinically used in the treatment of tumors, cardiovascular diseases, and cerebrovascular complications associated with diabetes with few side effects and high safety. This paper reviewed the progress of research on its chemical constituents, pharmacological effects, clinical applications, developing applications, and toxicology, which provides a basis for the better development and utilization of A. Radix.


Asunto(s)
Planta del Astrágalo , Botánica , Medicamentos Herbarios Chinos , Saponinas , Planta del Astrágalo/química , Astragalus propinquus/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Saponinas/farmacología
3.
Environ Sci Pollut Res Int ; 31(13): 20637-20650, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383925

RESUMEN

Intertidal mudflats are susceptible to oil pollution due to their proximity to discharges from industries, accidental spills from marine shipping activities, oil drilling, pipeline seepages, and river outflows. The experimental study was divided into two periods. In the first period, microcosm trials were carried out to examine the effect of chemically modified biochar on biological hydrocarbon removal from sediments. The modified biochar's surface area increased from 2.544 to 25.378 m2/g, followed by a corresponding increase in the hydrogen-carbon and oxygen-carbon ratio, indicating improved stability and polarity. In the second period, the effect of exogenous fungus - Scedoporium sp. ZYY on the bacterial community structure was examined in relation to total petroleum hydrocarbon (TPH) removal. The maximum TPH removal efficiency of 82.4% was achieved in treatments with the modified biochar, followed by a corresponding increase in Fluorescein diacetate hydrolysis activity. Furthermore, high-throughput 16S RNA gene sequencing employed to identify changes in the bacterial community of the original sediment and treatments before and after fungal inoculation revealed Proteobacteria as the dominant phylum. In addition, it was observed that Scedoporium sp. ZYY promoted the proliferation of specific TPH-degraders, particularly, Hyphomonas adhaerens which accounted for 77% of the total degrading populations in treatments where TPH removal was highest. Findings in this study provide valuable insights into the effect of modified biochar and the fundamental role of exogenous fungus towards the effective degradation of oil-contaminated intertidal mudflat sediments.


Asunto(s)
Carbón Orgánico , Petróleo , Scedosporium , Scedosporium/genética , Scedosporium/metabolismo , Biodegradación Ambiental , ARN Ribosómico 16S/genética , Hidrocarburos/metabolismo , Petróleo/metabolismo , Hongos/metabolismo , Carbono
4.
Eur J Nutr ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366270

RESUMEN

PURPOSE: The aim of this study was to evaluate the effects of vitamin D and/or calcium supplementation on sleep quality in individuals with prediabetes. METHODS: A 24-week randomized controlled trial (RCT) was conducted in a 212 Chinese population with prediabetes. Participants were randomly assigned to four groups: vitamin D + calcium group (1600 IU/day + 500 mg/day, n = 53), vitamin D group (1600 IU/day, n = 54), calcium group (500 mg/day, n = 51), and control group (placebo, n = 54). The Pittsburgh Sleep Quality Index (PSQI) was used as the primary outcome to assess sleep quality. Questionnaires and fasting blood samples were collected at baseline and post-intervention for demographic assessment and correlation index analysis. RESULTS: After a 24-week intervention, a significant difference was observed in serum 25(OH)D concentration among the four groups (P < 0.05), and the total PSQI score in vitamin D + calcium group was lower compared to the preintervention levels. Subgroup analyses revealed improved sleep quality with calcium supplementation (P < 0.05) for specific groups, including women, individuals with a low baseline 25(OH)D level (< 30 ng/mL), and individuals in menopause. Moreover, correlation analysis revealed a negative correlation between the extent of change in sleep efficiency scores before and after the calcium intervention and the degree of change in insulin efficiency scores (r = - 0.264, P = 0.007), as well as the magnitude of change in islet beta cell function (r = - 0.304, P = 0.002). CONCLUSIONS: The combined intervention of vitamin D and calcium, as well as calcium interventions alone, exhibits substantial potential for improving sleep quality in individuals with prediabetes. CLINICAL TRIAL REGISTRATION: The trial was registered in August 2019 as ChiCTR190002487.

5.
Nat Prod Res ; : 1-17, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372230

RESUMEN

The genus Helleborus belongs to the Ranunculaceae family, distributed in southeastern Europe and western Asia. In folk medicine, it is commonly used as an anti-inflammatory and analgesic medicine for rheumatoid arthritis and bruises. Through reviewing recent articles, it was found that two hundred and twenty-six compounds have been isolated and identified from the genus Helleborus. These compounds include steroids, flavonoids, phenylpropanoids, lignans, anthraquinones, phenolics and others. Among them, the main chemical constituents are steroids. Pharmacological studies show Helleborus has anti-cancer, immunomodulatory, anti-inflammatory, analgesic, anti-hyperglycaemic, antioxidant and antibacterial properties. This article reviews the botany, phytochemistry, pharmacological effects and clinical applications of the genus Helleborus. Hopefully, it will provide a reference for in-depth research and exploitation of the genus Helleborus.

6.
Am J Chin Med ; 51(8): 1983-2040, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37903715

RESUMEN

Ganoderma is the dried fruiting bodiy of Ganoderma lucidum (Leyss.ex Fr.) Karst. or Ganoderma sinense Zhao, Xu et Zhang, belonging to the family Polyporaceae, which grows mainly in tropical, subtropical, and temperate regions. As a traditional Chinese medicine, Ganoderma has been used in China for more than 2000 years because of its medicinal properties, such as relieving cough and asthma, providing nourishment, and strengthening. Currently, more than 470 natural compounds have been obtained from the fungus, mainly including terpenoids, steroids, alkaloids, phenols, and other types of compounds. Modern pharmacological studies have shown that Ganoderma has antitumor, anti-inflammatory, hypoglycemic, hypolipidemic, and immunomodulatory effects. It is mainly used in clinical practice for the treatment of Diabetic Nephropathy and malignant tumors, with few side effects and high safety. This paper reviews the progress of research on its chemical composition, pharmacological effects, and clinical applications, with the goal of providing a basis for the better development and utilization of Ganoderma.


Asunto(s)
Ganoderma , Neoplasias , Polyporaceae , Reishi , Triterpenos , Humanos , Ganoderma/química , Reishi/química , Neoplasias/tratamiento farmacológico , Medicina Tradicional China , Triterpenos/uso terapéutico
7.
Apoptosis ; 28(11-12): 1618-1627, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37530936

RESUMEN

PURPOSE: We aimed to evaluate whether pulmonary fibrosis occurs in type 2 diabetes rat models and whether VD3 can prevent it by inhibiting pyroptosis. METHODS: Sprague-Dawley rats were assigned to normal control (NC), diabetic model control (MC), low-dose VD3 (LVD), medium-dose VD3 (MVD), high-dose VD3 (HVD) and metformin positive control (PC) groups. Type 2 diabetes model was induced by a high-sugar, high-fat diet combined with STZ injection, and subsequently intervened with VD3 or metformin for 10 weeks. Blood glucose, body weight, food intake, water intake, urine volume, morphology, lung hydroxyproline level, immunohistochemistry, TUNEL staining, inflammatory cytokines secretion and related protein expression were analyzed. RESULTS: Diabetic rats exhibited significant impairments in fasting blood glucose, insulin resistance, body weight, food intake, water intake, and urine volume. While morphological parameters, diabetic rats exhibited severe lung fibrosis. Intriguingly, VD3 intervention reversed, at least in part, the diabetes-induced alterations. The expression of pyroptosis-related proteins was up-regulated in diabetic lungs whereas the changes were reversed by VD3. In the meanwhile, SIRT3 expression was down-regulated in diabetic lungs while VD3 up-regulated it. CONCLUSION: Fibrotic changes were observed in diabetic rat lung tissue and our study indicates that VD3 may effectively ameliorate diabetic pulmonary fibrosis via SIRT3-mediated suppression of pyroptosis.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Metformina , Fibrosis Pulmonar , Sirtuina 3 , Ratas , Animales , Colecalciferol/farmacología , Fibrosis Pulmonar/tratamiento farmacológico , Sirtuina 3/efectos adversos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratas Sprague-Dawley , Piroptosis , Glucemia , Apoptosis , Metformina/farmacología , Metformina/uso terapéutico , Peso Corporal
8.
Environ Pollut ; 335: 122365, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37572849

RESUMEN

The widespread exploration and exploitation of crude oil has increased the prevalence of petroleum hydrocarbon pollution in the marine and coastal environment. Bioremediation of petroleum hydrocarbons using cell immobilization techniques is gaining increasing attention. In this study, the crude oil degradation performance of bacterial and fungal co-culture was optimized by entrapping both cells in sodium-alginate and polyvinyl alcohol composite beads. Results indicate that fungal cells remained active after entrapment and throughout the experiment, while bacterial cells were non-viable at the end of the experimental period in treatments with the bacterial-fungal ratio of 1:2. A remarkable decrease in surface tension from 72 mN/m to 36.51 mN/m was achieved in treatments with the bacterial-fungal ratio of 3:1. This resulted in a significant (P < 0.05) total petroleum hydrocarbon (TPH) removal rate of 89.4%, and the highest degradation of n-alkanes fractions (from 2129.01 mg/L to 118.53 mg/L), compared to the other treatments. Whereas PAHs removal was highest in treatments with the most fungal abundance (from 980.96 µg/L to 177.3 µg/L). Furthermore, enzymes analysis test revealed that catalase had the most effect on microbial degradation of the target substrate, while protease had no significant impact on the degradation process. High expression of almA and PAH-RHDa genes was achieved in the co-culture treatments, which correlated significantly (P < 0.05) with n-alkanes and PAHs removal, respectively. These results indicate that the application of immobilized bacterial and fungal cells in defined co-culture systems is an effective strategy for enhanced biodegradation of petroleum hydrocarbons in aqueous systems.


Asunto(s)
Acinetobacter , Petróleo , Hidrocarburos Policíclicos Aromáticos , Scedosporium , Petróleo/análisis , Scedosporium/metabolismo , Técnicas de Cocultivo , Hidrocarburos/metabolismo , Alcanos/metabolismo , Biodegradación Ambiental , Bacterias/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis
9.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3287-3293, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37382013

RESUMEN

This paper aimed to study the chemical constituents from the root bark of Schisandra sphenanthera. Silica, Sephadex LH-20 and RP-HPLC were used to separate and purify the 80% ethanol extract of S. sphenanthera. Eleven compounds were identified by ~1H-NMR, ~(13)C-NMR, ESI-MS, etc., which were 2-[2-hydroxy-5-(3-hydroxypropyl)-3-methoxyphenyl]-propane-1,3-diol(1), threo-7-methoxyguaiacylglycerol(2),4-O-(2-hydroxy-1-hydroxymethylethyl)-dihydroconiferylalcohol(3), morusin(4), sanggenol A(5), sanggenon I(6), sanggenon N(7), leachianone G(8),(+)-catechin(9), epicatechin(10), and 7,4'-dimethoxyisoflavone(11). Among them, compound 1 was a new compound, and compounds 2-9 were isolated from S. sphenanthera for the first time. Compounds 2-11 were subjected to cell viability assay, and the results revealed that compounds 4 and 5 had potential cytotoxicity, and compound 4 also had potential antiviral activity.


Asunto(s)
Catequina , Schisandra , Corteza de la Planta , Antivirales , Bioensayo , Fenoles
10.
Funct Integr Genomics ; 23(2): 106, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977932

RESUMEN

OBJECTIVE: Screening Chinese angelica (CHA) and Fructus aurantii (FRA) for ingredients with therapeutic effects on colorectal cancer (CRC) and discovering novel targets for the prevention or treatment of CRC. METHODS: TCMSP database as a starting point for the initial selection of ingredients and targets, we screened and validated the ingredients and targets of CHA and FRA using tools such as Autodock Vina, R 4.2.0, and GROMACS. To obtain the pharmacokinetic information of the active ingredients, we performed ADMET prediction and consulted a large number of works related to CRC cell lines for the discussion and validation of the results. RESULTS: Molecular dynamics simulation results showed the complexes formed between these components and targets can exist in a very stable tertiary structure under the human environment, and their side effects can be ignored. CONCLUSIONS: Our study successfully explains the effective mechanism of CHA and FRA for improving CRC while predicting the potential targets PPARG, AKT1, RXRA, and PPARA of CHA and FRA for CRC treatment, which provides a new foundation for investigating the novel compounds of TCMs and a new direction for subsequent CRC research.


Asunto(s)
Citrus , Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Medicamentos Herbarios Chinos/análisis , Medicamentos Herbarios Chinos/farmacología , Frutas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
11.
Adv Healthc Mater ; 12(2): e2201367, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36325652

RESUMEN

Magnesium (Mg)-based alloys have been regarded as promising implants for future clinic orthopedics, however, how to endow them with good anti-corrosion and biofunctions still remains a great challenge, especially for complicated bone diseases. Herein, three transition metals (M = Mn, Fe, and Co)-containing layered double hydroxides (LDH) (LDH-Mn, LDH-Fe, and LDH-Co) with similar M content are prepared on Mg alloy via a novel two-step method, then systematic characterizations and comparisons are conducted in detail. Results showed that LDH-Mn exhibited the best corrosion resistance, LDH-Mn and LDH-Co possessed excellent photothermal and enzymatic activities, LDH-Fe revealed better cytocompatibility and antibacterial properties, while LDH-Co demonstrated high cytotoxicity. Based on these results, an optimized bilayer LDH coating enriched with Fe and Mn (LDH-MnFe) from top to bottom have been designed for further in vitro and in vivo analysis. The top Fe-riched layer provided biocompatibility and antibacterial properties, while the bottom Mn-riced layer provided excellent anti-corrosion, photothermal and enzymatic effects. In addition, the released Mg, Fe, and Mn ions have a positive influence on angiogenesis and osteogenesis. Thus, the LDH-MnFe showed complementary and synergistic effects on anti-corrosion and multibiofunctions (antibacteria, antitumor, and osteogenesis). The present work offers a novel multifunctional Mg-based implant for treating bone diseases.


Asunto(s)
Enfermedades Óseas , Magnesio , Humanos , Magnesio/farmacología , Aleaciones/farmacología , Hidróxidos , Antibacterianos/farmacología
12.
Chemosphere ; 311(Pt 1): 137039, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36342026

RESUMEN

Limited information is available on the links between heavy metals' exposure and coronary heart disease (CHD). We aim to establish an efficient and explainable machine learning (ML) model that associates heavy metals' exposure with CHD identification. Our datasets for investigating the associations between heavy metals and CHD were sourced from the US National Health and Nutrition Examination Survey (US NHANES, 2003-2018). Five ML models were established to identify CHD by heavy metals' exposure. Further, 11 discrimination characteristics were used to test the strength of the models. The optimally performing model was selected for identification. Finally, the SHapley Additive exPlanations (SHAP) tool was used for interpreting the features to visualize the selected model's decision-making capacity. In total, 12,554 participants were eligible for this study. The best performing random forest classifier (RF) based on 13 heavy metals to identify CHD was chosen (AUC: 0.827; 95%CI: 0.777-0.877; accuracy: 95.9%). SHAP values indicated that cesium (1.62), thallium (1.17), antimony (1.63), dimethylarsonic acid (0.91), barium (0.76), arsenous acid (0.79), total arsenic (0.01) in urine, and lead (3.58) and cadmium (4.66) in blood positively contributed to the model, while cobalt (-0.15), cadmium (-2.93), and uranium (-0.13) in urine negatively contributed to the model. The RF model was efficient, accurate, and robust in identifying an association between heavy metals' exposure and CHD among US NHANES 2003-2018 participants. Cesium, thallium, antimony, dimethylarsonic acid, barium, arsenous acid, and total arsenic in urine, and lead and cadmium in blood show positive relationships with CHD, while cobalt, cadmium, and uranium in urine show negative relationships with CHD.


Asunto(s)
Arsénico , Enfermedad Coronaria , Contaminantes Ambientales , Metales Pesados , Uranio , Adulto , Humanos , Encuestas Nutricionales , Cadmio/orina , Antimonio , Exposición a Riesgos Ambientales/análisis , Bario , Talio , Cobalto/orina , Cesio , Enfermedad Coronaria/epidemiología , Aprendizaje Automático
13.
J Agric Food Chem ; 71(1): 347-357, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36541437

RESUMEN

So far, the potential role of vitamin D in ß-cell function remains a matter of debate. Therefore, a randomized, placebo-controlled trial (RCT) was conducted to evaluate the effect of a vitamin D supplement with or without calcium on ß-cell function in a Chinese population with prediabetes. Two hundred and forty-three subjects were randomly assigned in a 2-by-2 factorial-design RCT to receive either 1600 IU/day vitamin D3 with/or 500 mg/day calcium for 24 weeks. The results showed that oral administration of vitamin D and calcium could increase the secretion of insulin. Vitamin D-insufficient individuals displayed an increment in the disposition index (adjusted change = 0.31, 95%CI: 0.07, 0.56) after treatment by vitamin D + calcium. It illustrated that supplementation with vitamin D and calcium might improve the function of pancreatic ß-cell in prediabetes with low serum 25(OH)D levels. However, further studies are needed to confirm the findings. Given the low vitamin D content in natural foods, it is necessary to fortify processed foods with vitamin D.


Asunto(s)
Resistencia a la Insulina , Células Secretoras de Insulina , Estado Prediabético , Humanos , Calcio , Calcio de la Dieta , Colecalciferol , Suplementos Dietéticos , Método Doble Ciego , Estado Prediabético/tratamiento farmacológico , Vitamina D , Vitaminas
14.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6408-6413, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38211998

RESUMEN

The chemical constituents of Helleborus thibetanus were isolated and purified by silica gel column chromatography, Sephadex LH-20 gel column chromatography, and semi-preparative RP-HPLC, and the structures of all compounds were identified by modern spectrographic technology(MS, NMR). The MTT method was used to measure the cytotoxicity of compounds 1-8. Twelve compounds were isolated from the roots and rhizomes of H. thibetanus and were identified as(25R)-22ß,25-expoxy-26-[(O-ß-D-glucopyranosyl)oxy]-1ß,3ß-dihydroxyfurosta-5-en(1), ß-sitosterol myristate(2), ß-sitosterol lactate(3), ß-sitosterol 3-O-ß-D-glucopyrannoside(4), 4,6,8-trihydroxy-3,4-dihydronaphthalen-1(2H)-one(5), 1,3,5-trimethoxybenzene(6), 7,8-dimethylbenzo pteridine-2,4(1H,3H)-dione(7), 1H-indole-3-carboxylic acid(8), p-hydroxy cinnamic acid(9), lauric acid(10), n-butyl α-L-arabinofuranoside(11) and methyl-α-D-fructofuranoside(12), respectively. Among them, compound 1 is a new compound and named thibetanoside L; compounds 2, 5-8, 11 are first isolated from the family Ranunculaceae; compound 12 is isolated from the genus Helleborus for the first time. The results of MTT assay showed that the IC_(50) values of compounds 1-8 against HepG2 and HCT116 cells were greater than 100 µmol·L~(-1).


Asunto(s)
Helleborus , Helleborus/química , Estructura Molecular , Raíces de Plantas/química , Rizoma/química , Espectroscopía de Resonancia Magnética
15.
Artículo en Inglés | MEDLINE | ID: mdl-36141889

RESUMEN

Much previous research has indicated most composts of pruning waste are characterized by potential phytotoxicity, it is highly correlated with the chemical compounds of raw materials. Cinnamomum camphora, a common kind of pruning waste in Southeast Asia and East Asia, is characterized by intense bioactivities due to complex chemical components. This study investigated the potential phytotoxicity of C. camphora pruning waste in light of germination and higher plant growth. C. camphora extracted from leaves completely inhibited seed germination and still showed suppression of root elongation at an extremely low dosage. C. camphora extract also displayed significant inhibition of nutrient absorption in tomato seedlings, including moisture, available nutrients (N, P and K) and key microelements (Fe, Mn, Zn and S). The gene expression of aquaporins and transporters of nitrate and phosphate was significantly up-regulated in roots. This could be regarded as a positive response to C. camphora extract for enhancing nutrient absorption. Moreover, the severe damage to the plasma membrane in roots caused by C. camphora extract might seriously affect nutrient absorption. Camphor is the main component of the C. camphora extract that may induce the phytotoxicity of plasma membrane damage, resulting in the inhibition of nutrient absorption and low biomass accumulation. This study provided a new understanding of the ecotoxicological effects of C. camphora pruning waste, indicating that the harmless disposal of pruning waste requires much attention and exploration in the future.


Asunto(s)
Cinnamomum camphora , Alcanfor/metabolismo , Cinnamomum camphora/química , Cinnamomum camphora/genética , Cinnamomum camphora/metabolismo , Germinación , Nitratos/análisis , Fosfatos/análisis , Extractos Vegetales/metabolismo , Extractos Vegetales/toxicidad , Hojas de la Planta/química
16.
J Pharm Pharmacol ; 74(12): 1718-1742, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36106816

RESUMEN

OBJECTIVES: The genus Reynoutria belonging to the family Polygonaceae is widely distributed in the north temperate zone and used in folk medicine. It is administered as a sedative, tonic and digestive, also as a treatment for canities and alopecia. Herein, we reported a review on traditional uses, phytochemistry and pharmacology reported from 1985 up to early 2022. All the information and studies concerning Reynoutria plants were summarized from the library and digital databases (e.g. ScienceDirect, SciFinder, Medline PubMed, Google Scholar, and CNKI). KEY FINDINGS: A total of 185 articles on the genus Reynoutria have been collected. The phytochemical investigations of Reynoutria species revealed the presence of more than 277 chemical components, including stilbenoids, quinones, flavonoids, phenylpropanoids, phospholipids, lactones, phenolics and phenolic acids. Moreover, the compounds isolated from the genus Reynoutria possess a wide spectrum of pharmacology such as anti-atherosclerosis, anti-inflammatory, antioxidative, anticancer, neuroprotective, anti-virus and heart protection. SUMMARY: In this paper, the traditional uses, phytochemistry and pharmacology of genus Reynoutria were reviewed. As a source of traditional folk medicine, the Reynoutria genus have high medicinal value and they are widely used in medicine. Therefore, we hope our review can help genus Reynoutria get better development and utilization.


Asunto(s)
Fitoterapia , Reynoutria , Etnofarmacología , Medicina Tradicional , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
17.
Am J Chin Med ; 50(5): 1219-1253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35681262

RESUMEN

Sinomenium acutum is the dry stem of Sinomenium acutum (Thunb.) Rehd et Wils. (S. acutum) and Sinomenium acutum (Thunb.) Rehd. et Wils. var. cinereum Rehd. et Wils and is mainly distributed in China and Japan. As a traditional Chinese medicine (TCM) for dispelling wind and dampness in China, it is widely distributed and has a long history of drug use. In recent years, with the increase of the incidence of rheumatoid disease, S. acutum has become the focus of research. This paper reviews the literature on the chemical constituents, pharmacological effects, clinical applications and pharmacokinetics and safety of S. acutum from the past 60 years. At present, more than 210 natural compounds have been isolated from S. acutum, including alkaloids, lignans, triterpenoid saponins, steroids, and other structures. Pharmacological activities of S. acutum were mainly reported on anti-inflammatory, analgesic, anti-allergic, immunosuppressive, anti-tumor, liver-protective, anti-oxidative, and other effects, and clinical applications were mainly recorded on rheumatoid arthritis, ankylosing spondylitis, and other diseases. The clinical use of SIN has fewer side effects and more safety; only a small number of gastrointestinal reactions occurred, and the symptoms disappeared after the drug stopped. The purpose of this paper is to lay a foundation and provide reference for the follow-up research and wide application of S. acutum.


Asunto(s)
Alcaloides , Artritis Reumatoide , Botánica , Medicamentos Herbarios Chinos , Alcaloides/uso terapéutico , Antiinflamatorios no Esteroideos , Artritis Reumatoide/tratamiento farmacológico , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Sinomenium/química
18.
Comput Biol Med ; 146: 105549, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35751193

RESUMEN

OBJECTIVE: Based on bioinformatics and network pharmacology, the treatment of Saussurea involucrata (SAIN) on novel coronavirus (COVID-19) was evaluated by the GEO clinical sample gene difference analysis, compound-target molecular docking, and molecular dynamics simulation. role in the discovery of new targets for the prevention or treatment of COVID-19, to better serve the discovery and clinical application of new drugs. MATERIALS AND METHODS: Taking the Traditional Chinese Medicine System Pharmacology Database (TCMSP) as the starting point for the preliminary selection of compounds and targets, we used tools such as Cytoscape 3.8.0, TBtools 1.098, AutoDock vina, R 4.0.2, PyMol, and GROMACS to analyze the compounds of SAIN and targets were initially screened. To further screen the active ingredients and targets, we carried out genetic difference analysis (n = 72) through clinical samples of COVID-19 derived from GEO and carried out biological process (BP) analysis on these screened targets (P ≤ 0.05)., gene = 9), KEGG pathway analysis (FDR≤0.05, gene = 9), protein interaction network (PPI) analysis (gene = 9), and compounds-target-pathway network analysis (gene = 9), to obtain the target Point-regulated biological processes, disease pathways, and compounds-target-pathway relationships. Through the precise molecular docking between the compounds and the targets, we further screened SAIN's active ingredients (Affinity ≤ -7.2 kcal/mol) targets and visualized the data. After that, we performed molecular dynamics simulations and consulted a large number of related Validation of the results in the literature. RESULTS: Through the screening, analysis, and verification of the data, it was finally confirmed that there are five main active ingredients in SAIN, which are Quercitrin, Rutin, Caffeic acid, Jaceosidin, and Beta-sitosterol, and mainly act on five targets. These targets mainly regulate Tuberculosis, TNF signaling pathway, Alzheimer's disease, Pertussis, Toll-like receptor signaling pathway, Influenza A, Non-alcoholic fatty liver disease (NAFLD), Neuroactive ligand-receptor interaction, Complement and coagulation cascades, Fructose and mannose metabolism, and Metabolic pathways, play a role in preventing or treating COVID-19. Molecular dynamics simulation results show that the four active ingredients of SAIN, Quercitrin, Rutin, Caffeic acid, and Jaceosidin, act on the four target proteins of COVID-19, AKR1B1, C5AR1, GSK3B, and IL1B to form complexes that can be very stable in the human environment. Tertiary structure exists. CONCLUSION: Our study successfully explained the effective mechanism of SAIN in improving COVID-19, and at the same time predicted the potential targets of SAIN in the treatment of COVID-19, AKR1B1, IL1B, and GSK3B. It provides a new basis and provides great support for subsequent research on COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos , Saussurea , Aldehído Reductasa , Biología Computacional , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Farmacología en Red , Rutina
19.
Artículo en Inglés | MEDLINE | ID: mdl-35497924

RESUMEN

Background: Pulmonary fibrosis is difficult to treat. Early diagnosis and finding potential drug therapy targets of pulmonary fibrosis are particularly important. There were still various problems with existing pulmonary fibrosis markers, so it is particularly important to find new biomarkers and drug treatment targets. m6A (N6,2'-O-dimethyladenosine) RNA methylation was the cause of many diseases, and it is regulated by m6A methylation regulators. So, whether RNA methylation regulators can be a diagnostic marker and potential drug therapy target of early pulmonary fibrosis needs to be explored. Materials and Methods: Using GSE110147 and GSE33566 in the GEO database to predict the m6A methylation regulators that may be related to the development of pulmonary fibrosis, we used 10 mg/ml bleomycin to induce mouse pulmonary fibrosis models and human pulmonary fibrosis samples, to confirm whether this indicator can be an early diagnostic marker of pulmonary fibrosis. Results: According to the database prediction results, METTL3 can predict the occurrence and development of pulmonary fibrosis, and the results of MASSON and HE staining show that the fibrosis model of mice is successful, and the fibrosis of human samples is obvious. The results of immunohistochemistry showed that the expression of METTL3 was significantly reduced in pulmonary fibrosis. Conclusions: The m6A methylation regulator METTL3 can be considered as an important biomarker for diagnosing pulmonary fibrosis occurrence, furthermore it could be considered as a drug target because of its low expression in pulmonary fibrosis.

20.
Chemosphere ; 290: 133337, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34933030

RESUMEN

Microbial remediation has proven to be an effective technique for the cleanup of crude-oil contaminated sites. However, limited information exists on the dynamics involved in defined co-cultures of biosurfactant-producing bacteria and fungi in bioremediation processes. In this study, a fungal strain (Scedosporium sp. ZYY) capable of degrading petroleum hydrocarbons was isolated and co-cultured with biosurfactant-producing bacteria (Acinetobacter sp. Y2) to investigate their combined effect on crude-oil degradation. Results showed that the surface tension of the co-culture decreased from 63.12 to 47.58 mN m-1, indicating the secretion of biosurfactants in the culture. Meanwhile, the degradation rate of total petroleum hydrocarbon increased from 23.36% to 58.61% at the end of the 7-d incubation period. In addition, gas chromatography - mass spectrometry analysis showed a significant (P < 0.05) degradation from 3789.27 mg/L to 940.33 mg/L for n-alkanes and 1667.33 µg/L to 661.5 µg/L for polycyclic aromatic hydrocarbons. Moreover, RT-qPCR results revealed the high expression of alkB and CYP52 genes by Acinetobacter sp. Y2 and Scedosporium sp. ZYY respectively in the co-culture, which corelated positively (P < 0.01) with n-alkane removal. Finally, microbial growth assay which corresponded with Fluorescein diacetate hydrolysis activity, highlighted the synergistic behavior of both strains in tackling the crude oil. Findings in this study suggest that the combination of fungal strain and biosurfactant-producing bacteria effectively enhances the degradation of petroleum hydrocarbons, which could shed new light on the improvement of bioremediation strategies.


Asunto(s)
Petróleo , Bacterias/genética , Biodegradación Ambiental , Técnicas de Cocultivo , Hongos , Hidrocarburos , Tensoactivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA