Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1030, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310104

RESUMEN

Secretin, though originally discovered as a gut-derived hormone, is recently found to be abundantly expressed in the ventromedial hypothalamus, from which the central neural system controls satiety, energy metabolism, and bone homeostasis. However, the functional significance of secretin in the ventromedial hypothalamus remains unclear. Here we show that the loss of ventromedial hypothalamus-derived secretin leads to osteopenia in male and female mice, which is primarily induced by diminished cAMP response element-binding protein phosphorylation and upregulation in peripheral sympathetic activity. Moreover, the ventromedial hypothalamus-secretin inhibition also contributes to hyperphagia, dysregulated lipogenesis, and impaired thermogenesis, resulting in obesity in male and female mice. Conversely, overexpression of secretin in the ventromedial hypothalamus promotes bone mass accrual in mice of both sexes. Collectively, our findings identify an unappreciated secretin signaling in the central neural system for the regulation of energy and bone metabolism, which may serve as a new target for the clinical management of obesity and osteoporosis.


Asunto(s)
Hipotálamo , Secretina , Ratones , Masculino , Femenino , Animales , Secretina/metabolismo , Hipotálamo/metabolismo , Obesidad/genética , Obesidad/metabolismo , Homeostasis/fisiología , Metabolismo Energético
2.
J Transl Med ; 21(1): 920, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115108

RESUMEN

BACKGROUND: Previous studies have demonstrated that high-density lipoprotein cholesterol (HDL-C) plays an anti-atherosclerosis role through reverse cholesterol transport. Several studies have validated the efficacy and safety of natural products in treating atherosclerosis (AS). However, the study of raising HDL-C levels through natural products to treat AS still needs to be explored. METHODS: The gene sets associated with AS were collected and identified by differential gene analysis and database query. By constructing a protein-protein interaction (PPI) network, the core submodules in the network are screened out. At the same time, by calculating node importance (Nim) in the PPI network of AS disease and combining it with Kyoto Encyclopedia of genes and genomes (KEGG) pathways enrichment analysis, the key target proteins of AS were obtained. Molecular docking is used to screen out small natural drug molecules with potential therapeutic effects. By constructing an in vitro foam cell model, the effects of small molecules on lipid metabolism and key target expression of foam cells were investigated. RESULTS: By differential gene analysis, 451 differential genes were obtained, and a total of 313 disease genes were obtained from 6 kind of databases, then 758 AS-related genes were obtained. The enrichment analysis of the KEGG pathway showed that the enhancement of HDL-C level against AS was related to Lipid and atherosclerosis, Cholesterol metabolism, Fluid shear stress and atherosclerosis, PPAR signaling pathway, and other pathways. Then we intersected 31 genes in the core module of the PPI network, the top 30 genes in Nims, and 32 genes in the cholesterol metabolism pathway, and finally found 3 genes. After the above analysis and literature collection, we focused on the following three related gene targets: APOA1, LIPC, and CETP. Molecular docking showed that Genistein has a good binding affinity for APOA1, CETP, and LIPC. In vitro, experiments showed that Genistein can up-regulated APOA1, LIPC, and CETP levels. CONCLUSIONS: Based on our research, Genistein may have the effects of regulating HDL-C and anti-atherosclerosis. Its mechanism of action may be related to the regulation of LIPC, CETP, and APOA1 to improve lipid metabolism.


Asunto(s)
Aterosclerosis , Productos Biológicos , Medicamentos Herbarios Chinos , Humanos , Simulación del Acoplamiento Molecular , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Genisteína , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , HDL-Colesterol/metabolismo
3.
Sci Adv ; 9(7): eadd5330, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791202

RESUMEN

Salt homeostasis is orchestrated by both neural circuits and peripheral endocrine factors. The colon is one of the primary sites for electrolyte absorption, while its potential role in modulating sodium intake remains unclear. Here, we revealed that a gastrointestinal hormone, secretin, is released from colon endocrine cells under body sodium deficiency and is indispensable for inducing salt appetite. As the neural substrate, circulating secretin activates specific receptors in the nucleus of the solitary tracts, which further activates the downstream paraventricular nucleus of the hypothalamus, resulting in enhanced sodium intake. These results demonstrated a previously unrecognized gut-brain pathway for the timely regulation of sodium homeostasis.


Asunto(s)
Apetito , Sodio en la Dieta , Apetito/fisiología , Secretina , Sodio , Regulación del Apetito/fisiología , Eje Cerebro-Intestino , Hipotálamo
4.
J Orthop Translat ; 39: 34-42, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36636358

RESUMEN

Background: Osteosarcoma (OS) is the most common primary malignancy in bone tissues, and effective therapeutics remain absent in clinical practice. Traditional Chinese medicines (TCM) have been used for thousands of years, which provide great insights into OS management. Gallic acid (GA) is a natural phenolic acid enriched in various foods and herbs. Several pharmacological activities of GA such as anti-oxidation and anti-inflammation have been well-established. However, its biological function in OS remains not fully understood. Methods: The potential anti-cancer properties of GA were evaluated in 143 â€‹B, U2OS and MG63 â€‹cells. Its effects on cell growth, cell cycle, apoptosis and migration were examined in these OS cells. The lncRNA H19 and Wnt/ß-catenin signaling were detected by qPCR, luciferase activity and Western blotting assays. The in vivo effect of GA on tumor growth was investigated using an orthotopic mouse model. Results: In the present study, GA was found to suppress the tumor growth in vitro via inducing cell cycle arrest and apoptosis in OS cells, and inhibit the invasion and metastasis as well. Using the orthotopic animal model, GA was also found to suppress tumorigenesis in vivo. Long noncoding RNA (lncRNA) H19 was demonstrated to be down-regulated by GA, and thus disrupted the canonical Wnt/ß-catenin signaling in OS cells. Furthermore, the ectopic expression of H19 rescued the GA-induced suppressive effects on tumor growth and metastasis, and partially reversed the inactivation of Wnt/ß-catenin signaling. Conclusions: Taken together, our results indicated that GA inhibited tumor growth through an H19-mediated Wnt/ß-catenin signaling regulatory axis in OS cells. The translational potential of this article: The information gained from this study provides a novel underlying mechanism of GA mediated anti-OS activity, suggesting that GA may be a promising drug candidate for OS patients.

5.
J Orthop Translat ; 33: 132-141, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35330943

RESUMEN

Background: Osteosarcoma (OS) is a common type of malignant bone tumor in adolescents with high risk of metastasis. However, the clinical management still remains unsatisfactory. Traditional Chinese medicine (TCM) has been widely considered as an alternative treatment, and their extracts have proved to possess great potential for drug discovery. Baicalein (BA), the active pharmaceutical ingredient of rhizoma coptidis, was proved to have anti-tumor properties in OS, but the mechanism remains poorly understood. Methods: The potential anti-cancer effects on cell growth, cell cycle, apoptosis and migration were examined in OS cells. Moreover, the lncRNA-Neighboring Enhancer of FOXA2 (lncRNA-NEF) and Wnt/ß-catenin signaling were detected by qPCR and Western blotting assays. The in vivo effect of GA on tumor growth was investigated using a xenograft mice model. Results: In the present study, BA was found to significantly suppress tumor growth in vitro and in vivo. And it was also found to inhibit the invasion and metastasis as well. As for the mechanism investigation, lncRNA-NEF was obviously upregulated by BA in OS cells, and thus induced the inactivation of Wnt/ß-catenin signaling. Moreover, lncRNA-NEF knockdown partially reversed the BA-induced anti-cancer activities; and successfully compensated the suppressive effect on Wnt/ß-catenin signaling. We therefore suggested that BA induced the inactivation of Wnt/ß-catenin signaling through promoting lncRNA-NEF expression. Conclusions: In conclude, our results demonstrated that BA suppressed tumor growth and metastasis in vitro and in vivo through an lncRNA-NEF driven Wnt/ß-catenin regulatory axis, in which lncRNA-NEF was upregulated by BA, and thus induced the inactivation of Wnt/ß-catenin signaling. The Translational potential of this article: The findings derived from this study validates the anti-cancer activity of BA in OS and provides a novel underlying mechanism, which suggest that BA may be a potential candidate to develop the effective drug for OS patients.

6.
J Ethnopharmacol ; 280: 114413, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34265379

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Curcuma kwangsiensis S. G. Lee & C. F. Liang (Guangxi ezhu, in Chinese) has been used as a traditional Chinese medicine (TCM) for approximately 2000 years. Curcumol is one of the major bioactive components of this herb, which has been demonstrated possesses anti-cancer properties, and was recorded in the Chinese Pharmacopoeia 2020 edition. However, most studies mainly focused on the superficial anti-cancer activity, the underlying mechanism remains poorly understood. AIM OF THE STUDY: In the present study, we aimed to investigate the anti-tumor effect of Curcumol on hepatocellular carcinoma (HCC), and elucidate its underlying mechanism from the perspective of epigenetic modification. MATERIALS AND METHODS: The potential anti-cancer properties of Curcumol were evaluated in HepG2 and SMMC-7721 cells. Its effects on cell growth, cell cycle, apoptosis and migration were examined in these HCC cells. Moreover, the lncRNA HOX transcript antisense intergenic RNA (Hotair) and histone methylatic modification were detected by qPCR and Western blotting assays. RESULTS: In the present study, Curcumol was illustrated to suppress cell growth in HCC cells via inducing apoptosis and cell cycle arrest. And it was also found that Curcumol inhibited the invasion and metastasis of HCC as well. As for the mechanism investigation, it was showed that lncRNA Hotair was significantly downregulated by Curcumol in HCC cells. As is well known, Hotair recruited histone methyltransferase enhancer of zeste homolog 2 (EZH2) to exert transcriptional regulation. Our results showed that EZH2 were downregulated by Curcumol in HCC cells, and thus disrupted the trimethylation of H3K9 and H3K27 which were specifically catalyzed by EZH2. CONCLUSIONS: In conclude, our results demonstrated that Curcumol suppressed tumor growth and metastasis via an Hotair/EZH2/histone modification regulatory axis.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , ARN Largo no Codificante/metabolismo , Sesquiterpenos/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Metilación , Estructura Molecular , ARN Largo no Codificante/genética , Sesquiterpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA