Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 34(12): 3357-3363, 2023 Dec.
Artículo en Chino | MEDLINE | ID: mdl-38511375

RESUMEN

We analyzed the particle size distribution of soil aggregates in 0-20 and 20-40 cm soil layers of rice-wheat rotation field based on a field plot test with two treatments, conventional straw returning (CK) and straw returning with the addition of straw decomposition promoting microbial inoculants (IT). We evaluated the water stability indices of soil aggregates (the number of soil water stable large aggregates R0.25, the average weight diameter MWD, and the geometric average diameter GMD), and measured the contents of soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) in the soil aggregates of <0.053, 0.053-0.25, 0.25-1, >1 mm. The results showed that: 1) The number of aggregates <0.053, 0.053-0.25, >0.25 mm in the 0-20 and 20-40 cm soil layers under IT decreased by 10.0% and 6.8%, increased by 3.0% and 5.7%, and 17.9% and 26.1% compared with CK, respectively. IT effectively increased R0.25, MWD, and GMD by 26.4%, 20.0%, 18.2% and 18.2%, 10.5%, 10.0% in 0-20 and 20-40 cm soil, respectively. 2) Compared to CK, the TP content of 0.25-1 mm aggregates in 0-20 and 20-40 cm soil under IT was significantly increased by 40.3% and 37.5%, respectively, without difference in TN and SOC contents. There was no significant difference in nutrient contents of the other aggregates between the treatments. The contents of SOC and TN in large aggregates (>0.25 mm) were higher than those in silty aggregates (<0.053 mm). Compared to CK, the cumulative contribution rates of SOC, TN and TP of <0.053 mm aggregates under IT were decreased in two soil layers. There was no significant difference in the nutrient cumulative contribution rates of 0.053-0.25 mm aggregates between treatments. The cumulative contribution rates of SOC, TN, and TP of large aggregates (>0.25 mm) under IT were 32.1%, 19.6%, 52.8% and 22.8%, 11.8%, 42.9% higher than those under CK in 0-20 and 20-40 cm soils, respectively. 3) The number of <0.053 mm aggregates was significantly negatively correlated with SOC and TP contents, while that of 0.053-0.25 mm aggregates was negatively correlated with nutrient content. The number of large aggregates (>0.25 mm) were significantly positively correlated with SOC, TN, and TP contents. In conclusion, straw returning with microbial-inoculant addition could promote the formation of soil macroaggregates (>0.25 mm), and improve the water stability of soil aggregates, increasing nutrient contents in soil macroaggregates, with the nutrients transferring from silty aggregates to macroaggregates.


Asunto(s)
Inoculantes Agrícolas , Suelo , Carbono/análisis , Nitrógeno/análisis , Nutrientes , Fósforo , Agua , Agricultura/métodos , China
2.
Phytother Res ; 35(6): 3298-3309, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33570219

RESUMEN

Abscisic acid (ABA), a well-known natural phytohormone reportedly exerts anti-inflammatory and anti-oxidative properties in diabetes and colitis. However, the efficacy of ABA against allergic airway inflammation and the underlying mechanism remain unknown. Herein, an OVA-induced murine allergic airway inflammation model was established and treated with ABA in the presence or absence of PPAR-γ antagonist GW9662. The results showed that ABA effectively stunted the development of airway inflammation, and concordantly downregulated OVA-induced activation of NLRP3 inflammasome, suppressed oxidative stress and decreased the expression of mitochondrial fusion/fission markers including Optic Atrophy 1 (OPA1), Mitofusion 2 (Mfn2), dynamin-related protein 1 (DRP1) and Fission 1 (Fis1). Moreover, ABA treatment further increased OVA-induced expression of PPAR-γ, while GW9662 abrogated the inhibitory effect of ABA on allergic airway inflammation as well as on the activation of NLRP3 inflammasome and oxidative stress. Consistently, ABA inhibited the activation of NLRP3 inflammasome, suppressed oxidative stress and mitochondrial fusion/fission in LPS-stimulated Raw264.7 cells via PPAR-γ. Collectively, ABA ameliorates OVA-induced allergic airway inflammation in a PPAR-γ dependent manner, and such effect of ABA may be associated with its inhibitory effect on NLRP3 inflammasome and oxidative stress. Our results suggest the potential of ABA or ABA-rich food in protecting against asthma.


Asunto(s)
Ácido Abscísico/farmacología , Inflamasomas/efectos de los fármacos , Inflamación/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Animales , Asma/metabolismo , Femenino , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células RAW 264.7 , Sistema Respiratorio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA