Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rheumatol Int ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37750894

RESUMEN

We aimed to investigate the factors associated with vitamin D deficiency and changes in 25 (OH)D levels, as well as the impact of those changes on disease activity and renal function among SLE patients. This retrospective cohort study was based on the medical records of SLE patients hospitalized between 2010 and 2021. We collected relevant information from this patient population. Logistic regression analysis was employed to determine the factors associated with vitamin D deficiency and increased 25 (OH)D levels, and we calculated the odds ratios (ORs) and 95% confidence intervals (CIs) accordingly. At baseline, among the 1257 SLE patients, the median and interquartile range of 25 (OH)D levels were 14 (9, 20) ng/ml, with 953 (75.8%) patients exhibiting 25 (OH)D deficiency (< 20 ng/ml). The presence of 25 (OH)D deficiency was found to be associated with renal involvement and a high glucocorticoid (GC) maintenance dose. Among the 383 patients who were followed up for an average of 18 months, an increase of at least 100% in 25 (OH)D levels was positively associated with a decreased GC maintenance dose and vitamin D3 supplementation, with adjusted odds ratios(OR) (95% confidence interval [CI]) of 2.16 (1.02, 4.59) and 1300 (70, 22300), respectively. Furthermore, an increased level of 25 (OH)D was significantly associated with a decrease in the Disease Activity Index 2000 score and the urinary protein/creatinine ratio. Patients with SLE have low vitamin D levels, especially those with impaired kidney function. Increased 25 (OH)D levels can be achieved through supplementation with high doses of vitamin D3 and are associated with improvements in disease activity and the urinary protein/creatinine ratio.

2.
Int J Biol Macromol ; 166: 1210-1219, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33157138

RESUMEN

Herein, the formation of starch-lipid complexes in steamed bread (SBr) free from and supplemented with fatty acids of varying chain lengths, including lauric acid (LA), glycerol monolaurate (GML), stearic acid (SA), and glycerol monostearate (GMS) and their effects on in vitro enzymatic digestibility were investigated. The enthalpy value of SBr samples (1.86-3.46 J/g) was significantly decreased (P < 0.05) compared to wheat starch samples (5.64-7.17 J/g) fortified with fatty acids. The relative crystallinity (16.5%-32.8%) of SBr corresponds to the content of starch-lipid complexes. SBr supplemented with fatty acids exhibited softer texture than lipid-free SBr stored at 4 °C for 0, 1, 4, and 7 days. Higher enzyme resistance was observed in SBr samples supplemented with fatty acids and the content of resistant starch (RS) was increased from 7.54% to 23.13% in SBr supplemented with LA. As demonstrated by microscopic computed tomography (mCT), the crystalline structure of SBr samples supplemented with LA and GML have a higher density than SBr fortified with SA and GMS; the findings which are in line with thermal properties and X-ray diffraction analysis. In sum, the formation of starch-lipid complexes could be considered as a new way to improve the SBr textural features during storage.


Asunto(s)
Pan , Suplementos Dietéticos , Ácidos Grasos/química , Lípidos/química , Almidón/química , alfa-Amilasas/metabolismo , Rastreo Diferencial de Calorimetría , Elementos Químicos , Glucosa/análisis , Cinética , Reología , Vapor , Temperatura , Tomografía Computarizada por Rayos X , Triticum/química , Difracción de Rayos X
3.
DNA Cell Biol ; 35(4): 192-202, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26862785

RESUMEN

The ~80 amino acid A box DNA-binding domain of high mobility group box 1 (HMGB1) protein antagonizes proinflammatory responses during myocardial ischemia reperfusion (I/R) injury. The exact role of microRNA-21 (miR-21) is unknown, but its altered levels are evident in I/R injury. This study examined the roles of HMGB1 A-box and miR-21 in rat myocardial I/R injury model. Sixty Sprague-Dawley rats were randomly divided into six equal groups: (1) Sham; (2) I/R; (3) Ischemic postconditioning (IPost); (4) AntagomiR-21 post-treatment; (5) Recombinant HMGB1 A-box pretreatment; and (6) Recombinant HMGB1 A-box + antagomiR-21 post-treatment. Hemodynamic indexes, arrhythmia scores, ischemic area and infarct size, myocardial injury, and related parameters were studied. Expression of miR-21 was detected by real-time quantitative polymerase chain reaction (qRT-PCR) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was used to quantify apoptosis. Left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), maximal rate of pressure rise (+dp/dtmax), and decline (-dp/dtmax) showed clear reduction upon treatment with recombinant HMGB1 A-box. Arrhythmia was relieved and infarct area decreased in the group pretreated with recombinant HMGB1 A-box, compared with other groups. Circulating lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels increased in response to irreversible cellular injury, while creatine kinase MB isoenzymes (CK-MB) and superoxide dismutase (SOD) activities were reduced in the I/R group, which was reversed following recombinant HMGB1 A-box treatment. Interestingly, pretreatment with recombinant HMGB1 A-box showed the most dramatic reductions in miR-21 levels, compared with other groups. Significantly reduced apoptotic index (AI) was seen in recombinant HMGB1 A-box pretreatment group and recombinant HMGB1 A-box + antagomiR-21 post-treatment group, with the former showing a more dramatic lowering in AI than the latter. Bax, caspase-8, and CHOP showed reduced expression, and Bcl-2 and p-AKT levels were upregulated in recombinant HMGB1 A-box pretreatment group. Thus, recombinant HMGB1 A-box treatment protects against I/R injury and the mechanisms may involve inhibition of miR-21 expression.


Asunto(s)
Apoptosis , Proteína HMGB1/uso terapéutico , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Fibrilación Ventricular/tratamiento farmacológico , Animales , Caspasa 8/metabolismo , Evaluación Preclínica de Medicamentos , Proteína HMGB1/farmacología , Hemodinámica , Poscondicionamiento Isquémico , Masculino , MicroARNs/genética , Miocardio/metabolismo , Miocardio/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas Sprague-Dawley , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Transducción de Señal , Factor de Transcripción CHOP/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteínas ras/metabolismo
4.
Bioresour Technol ; 146: 628-636, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23978478

RESUMEN

The present study proposes a novel strategy to get a rational production of biogas of the biomass residues from phytoremediation. This study investigates physiological responses, cadmium (Cd) accumulation and biogas production from canola, oat and wheat in pot and batch experiments. The results indicate that (1) aerial biomasses for canola, oat and wheat were enhanced by 5 mg Cd/kg soil by 19.41%, 8.78% and 3.38%, and the upper limit of Cd concentration that canola, oat and wheat can tolerate for aerial biomass production were 50, 10 and 10 mg Cd/kg soil; (2) canola accumulates more Cd than oat and wheat in its aerial parts; (3) cumulative biogas yields were 159.37%, 179.23% and 111.34% of the control when Cd in the shoot were 2.00±0.44, 39.80±1.25 and 6.37±0.15 mg Cd/kg biomass for canola, oat and wheat. Phytoremediation in cooperation with bioenergy production provide new insights for both soil remediation and energy research.


Asunto(s)
Biocombustibles , Cadmio/química , Productos Agrícolas/química , Fermentación , Avena/química , Biodegradación Ambiental , Biomasa , Ecología , Ácidos Grasos Monoinsaturados/química , Brotes de la Planta/química , Aceite de Brassica napus , Suelo/química , Contaminantes del Suelo/química , Factores de Tiempo , Triticum/química
5.
Huan Jing Ke Xue ; 28(7): 1600-6, 2007 Jul.
Artículo en Chino | MEDLINE | ID: mdl-17891976

RESUMEN

A pot experiment was conducted to examine the roles of earthworm in As uptake from original As-polluted soil by maize (Zea mays L.), and their effects on As, P fractions in the rhizosphere. The As-polluted soils with three As levels were collected from the arable soil near As mine. The plants were harvested after 10 weeks of growth. Dry weight (DW) and P, As concentrations of plants, as well as As and P fractions of the rhizospheric soil, were determined. The results showed that inoculated earthworm or appended rice straw increased maximal 149%, 222% DW of root and shoot, respectively. At the medium and high soil As levels, root As concentration in the soil treated by earthworm and rice straw was highest among all treatments, and earthworm increased more As concentration of shoot than rice straw did. In different soil As levels, root P concentration in the soil treated by earthworm was highest, and shoot P by rice straw. Ca-P affected maize absorbing As at the low soil As level(r = 0.981), and maize absorbing Al-P was restrained by As involved in well-crystallized hydrous oxides of Fe and Al at the medium (r = 0.953)and high (r = 0.997)soil As levels. The concentration of non-specially absorbed As and As combined with Fe or Al and of O-P increased at the soil inoculated earthworm or/and appended rice straw at the same time. These results indicated that earthworm was more valuable for plant developing than rice straw was.


Asunto(s)
Arsénico/metabolismo , Oligoquetos/metabolismo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Zea mays/metabolismo , Animales , Arsénico/química , Biodegradación Ambiental , Fraccionamiento Químico , Ecosistema , Fósforo/química , Raíces de Plantas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA