Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1491-1497, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005836

RESUMEN

By investigating the contamination status and predicting the exposure risk of mycotoxin in Coicis Semen, we aim to provide guidance for the safety supervision of Chinese medicinal materials and the formulation(revision) of mycotoxin limit standards. The content of 14 mycotoxins in the 100 Coicis Semen samples collected from five major markets of Chinese medicinal materials in China was determined by UPLC-MS/MS. The probability evaluation model based on Monte Carlo simulation method was established after Chi-square test and One-way ANOVA of the sample contamination data. Health risk assessment was performed on the basis of margin of exposure(MOE) and margin of safety(MOS). The results showed that zearalenone(ZEN), aflatoxin B_1(AFB_1), deoxynivalenol(DON), sterigmatocystin(ST), and aflatoxin B_2(AFB_2) in the Coicis Semen samples had the detection rates of 84%, 75%, 36%, 19%, and 18%, and the mean contamination levels of 117.42, 4.78, 61.16, 6.61, and 2.13 µg·kg~(-1), respectively. According to the limit standards in the Chinese Pharmacopoeia(2020 edition), AFB_1, AFs and ZEN exceeded the standards to certain extents, with the over-standard rates of 12.0%, 9.0%, and 6.0%, respectively. The exposure risks of Coicis Semen to AFB_1, AFB2, ST, DON, and ZEN were low, while 86% of the samples were contaminated with two or more toxins, which needs more attention. It is suggested that the research on the combined toxicity of different mycotoxins should be strengthened to accelerate the cumulative exposure assessment of mixed contaminations and the formulation(revision) of toxin limit standards.


Asunto(s)
Coix , Micotoxinas , Humanos , Micotoxinas/análisis , Aflatoxina B1/análisis , Cromatografía Liquida/métodos , Contaminación de Alimentos/análisis , Espectrometría de Masas en Tándem/métodos
2.
Phytomedicine ; 113: 154725, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36867963

RESUMEN

BACKGROUND: Regulating the microglial phenotype is an attractive strategy for treating diseases of the central nervous system such as depression and anxiety. Gastrodin can quickly cross the blood-brain barrier and mitigate microglia-mediated inflammation, which widely used to treat a variety of central nervous system diseases associated with microglial dysfunction. However, the molecular mechanism by which gastrodin regulates the functional phenotype of microglia remains unclear. PURPOSE: Since the transcription factor "nuclear factor erythroid 2-related factor 2″ (Nrf2) is associated with the anti-inflammatory effects of gastrodin, we hypothesized that gastrodin induces Nrf2 expression in microglia and thereby programs an anti-inflammatory phenotype. STUDY DESIGN: Male C57BL/6 mice, treated or not with gastrodin, were given lipopolysaccharide (LPS) at 0.25 mg/kg/d for 10 days to induce chronic neuroinflammation. The effects of gastrodin on microglial phenotypes, neuroinflammation and depression- and anxiety-like behaviors were evaluated. In another experiment, animals were treated with Nrf2 inhibitor ML385 throughout the 13-day gastrodin intervention period. METHODS: The effects of gastrodin on depression- and anxiety-like behaviors were evaluated through the sucrose preference test, forced swimming test, open field test and elevated plus-maze test; as well as its effects on morphology and molecular and functional phenotypes of hippocampal microglia through immunohistochemistry, real-time PCR and enzyme-linked immunosorbent assays. RESULTS: Chronic exposure to LPS caused hippocampal microglia to secrete inflammatory cytokines, their somata to enlarge, and their dendrites to lose branches. These changes were associated with depression- and anxiety-like behaviors. Gastrodin blocked these LPS-induced alterations and promoted an Arg-1+ microglial phenotype that protected neurons from injury. The effects of gastrodin were associated with Nrf2 activation, whereas blockade of Nrf2 antagonized gastrodin. CONCLUSION: These results suggest that gastrodin acts via Nrf2 to promote an Arg-1+ microglial phenotype, which buffers the harmful effects of LPS-induced neuroinflammation. Gastrodin may be a promising drug against central nervous system diseases that involve microglial dysfunction.


Asunto(s)
Depresión , Microglía , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Hipocampo/metabolismo , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Fenotipo
3.
Front Microbiol ; 13: 916418, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733964

RESUMEN

Bletilla striata (Thunb.) Rchb.f. is a perennial herb belonging to the Orchidaceae family. Its tubers are used in traditional Chinese medicine to treat gastric ulcers, inflammation, silicosis tuberculosis, and pneumogastric hemorrhage. It has been reported that different soil types can affect the growth of B. striata and the accumulation of secondary metabolites in its tubers, but the biological mechanisms underlying these effects remain unclear. In this study, we compared agronomic traits and the accumulation of secondary metabolites (extractum, polysaccharide, total phenol, militarine) in B. striata grown in sandy loam or sandy clay soil. In addition, we compared physicochemical properties and microbial communities between the two soil types. In pot experiments, we tested how irradiating soil or transplanting microbiota from clay or loam into soil affected B. striata growth and accumulation of secondary metabolites. The results showed that sandy loam and sandy clay soils differed significantly in their physicochemical properties as well as in the structure and composition of their microbial communities. Sandy loam soil had higher pH, SOM, SOC, T-Ca, T-N, T-Mg, T-Mn, T-Zn, A-Ca, A-Mn, and A-Cu than sandy clay soil, but significantly lower T-P, T-K, T-Fe, and A-P content. Sandy loam soil showed 7.32% less bacterial diversity based on the Shannon index, 19.59% less based on the Ace index, and 24.55% less based on the Chao index. The first two components of the PCoA explained 74.43% of the variation in the bacterial community (PC1 = 64.92%, PC2 = 9.51%). Similarly, the first two components of the PCoA explained 58.48% of the variation in the fungal community (PC1 = 43.67%, PC2 = 14.81%). The microbiome associated with sandy clay soil can promote the accumulation of militarine in B. striata tubers, but it inhibits the growth of B. striata. The accumulation of secondary metabolites such as militarine in B. striata was significantly higher in sandy clay than in sandy loam soil. Conversely, B. striata grew better in sandy loam soil. The microbiome associated with sandy loam soil can promote the growth of B. striata, but it reduces the accumulation of militarine in B. striata tubers. Pot experiment results further confirmed that the accumulation of secondary metabolites such as militarine was higher in soil transplanted with loam microbiota than in soil transplanted with clay microbiota. These results may help guide efforts to improve B. striata yield and its accumulation of specific secondary metabolites.

4.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2277-2280, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531672

RESUMEN

Due to the special biological characteristics, Gastrodia elata suffers from high resource consumption and low utilization rate in modern agricultural production, which significantly block the green and healthy development of this industry. Based on the theory and technology in ecological cultivation of Chinese medicinal materials, this study analyzed the challenges in ecological cultivation of G. elata, such as waste of fungus material, a few cultivation modes available, continuous cropping obstacles, frequent occurrence of diseases, and poor stability of ecological structure. According to the production practice, the following suggestions were proposed for ecological cultivation of G. elata: following the principle of environmental protection and no pollution, selecting suitable habitats to yield high-quality medicinal materials, committing to green control of diseases and pests, upgrading industrial structure to maximize the benefits, establishing a sound mechanism for protecting the genetic diversity of wild G. elata, carrying out simulative habitat cultivation to improve medicinal material quality, adopting science-based planning of fungus resources to relieve forestry pressure, enhancing the recycling and utilization of fungus materials, and applying diversified cultivation modes to improve the stability of ecological structure. The result is expected to provide a reference for the quality development of G. elata industry.


Asunto(s)
Gastrodia , Plantas Medicinales , Agricultura , Gastrodia/química , Plantas Medicinales/química
5.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2288-2295, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531674

RESUMEN

Brown rot is a common disease in the cultivation and production of Gastrodia elata, but its pathogens have not been fully revealed. In this study, the pathogenic fungi were isolated and purified from tubers of 77 G. elata samples with brown rot. Pathogens were identified by the pathogenicity test and morphological and molecular identification. The pathogenicity of each pathogen and its inhibitory effects on Armillaria gallica were compared. The results showed that 119 strains of fungi were isolated from tubers of G. elata infected with brown rot. Among them, the frequency of separation of Ilyonectria fungi was as high as 42.01%. The pathogenicity test showed that the pathogenicity characteristics of six strains of fungi were consistent with the natural symptoms of brown rot in G. elata. The morphological and molecular identification results showed that the six strains belonged to I. cyclaminicola and I. robusta in the Nectriaceae family of Sordariomycetes class, respectively. Both types of fungi could produce pigments, conidia, and chlamycospore, and the growth rate of I. cyclaminicola was significantly higher than that of I. robusta. The comparison of pathogenicity showed that the spots formed by I. cyclaminicola inoculation were significantly larger than those of I. robusta inoculation, suggesting I. cyclaminicola was superior to I. robusta in pathogenicity. The results of confrontation culture showed that I. cyclaminicola and I. robusta could signi-ficantly inhibit the germination and cordage growth of A. gallica. A. gallica also inhibited the growth of pathogens, and I. cyclaminicola was less inhibited as compared with I. robusta. The results of this study revealed for the first time that I. cyclaminicola and I. robusta were the pathogens responsible for G. elata brown rot.


Asunto(s)
Gastrodia , Hongos , Tubérculos de la Planta , Esporas Fúngicas , Virulencia
6.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2281-2287, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531673

RESUMEN

Tuber rot has become a serious problem in the large-scale cultivation of Gastrodia elata. In this study, we compared the resistance of different ecotypes of G. elata to tuber rot by field experiments on the basis of the investigation of G. elata diseases. The histological observation and transcriptome analysis were conducted to reveal the resistance differences and the underlying mechanisms among different ecotypes. In the field, G. elata f. glauca had the highest incidence of tuber rot, followed by G. elata f. viridis, and G. elata f. elata and G. elata f. glauca×G. elata f. elata showed the lowest incidence. Tuber rot showcased obvious plant source specificity and mainly occurred in the buds and bottom of G. elata plants. After infection, the pathogen spread hyphae in host cortex cells, which can change the endophytic fungal community structure in the cortex and parenchyma of G. elata. G. elata f. glauca had thinner lytic layer and more sugar lumps in the parenchyma than G. elata f. elata. The transcription of genes involved in immune defense, enzyme synthesis, polysaccharide synthesis, carbohydrate transport and metabolism, hydroxylase activity, and aromatic compound synthesis had significant differences between G. elata f. glauca and G. elata f. elata. These findings suggested that the differences in resis-tance to tuber rot among different ecotypes of G. elata may be related to the varied gene expression patterns and secondary metabolites. This study provides basic data for the prevention and control of tuber rot and the improvement of planting technology for G. elata.


Asunto(s)
Gastrodia , Ecotipo , Gastrodia/microbiología , Perfilación de la Expresión Génica , Tubérculos de la Planta/genética
7.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2296-2303, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531675

RESUMEN

The continuous cropping obstacle of Gastrodia elata is outstanding, but its mechanism is still unclear. In this study, microbial changes in soils after G. elata planting were investigated to explore the mechanism correlated with continuous cropping obstacle. The changes of species and abundance of fungi and bacteria in soils planted with G. elata after 1, 2, and 3 years were compared. The pathogenic fungi that might cause continuous cropping diseases of G. elata were isolated. Finally, the prevention and control measures of soil-borne fungal diseases of G. elata were investigated with the rotation planting pattern of "G. elata-Phallus impudicus". The results showed that G. elata planting resulted in the decrease in bacterial and fungal community stability and the increase in harmful fungus species and abundance in soils. This change was most obvious in the second year after G. elata planting, and the soil microbial community structure could not return to the normal level even if it was left idle for another two years. After G. elata planting in soils, the most significant change was observed in Ilyonectria cyclaminicola. The richness of the Ilyonectria fungus in soils was significantly positively correlated with the incidence of G. elata diseases. When I. cyclaminicola was inoculated in the sterile soil, the rot rate of G. elata was also significantly increased. After planting one crop of G. elata and one to three crops of P. impudicus, the fungus community structure in soils gradually recovered, and the abundance of I. cyclaminicola decreased year by year. Furthermore, the disease rate of G. elata decreased. The results showed that the cultivation of G. elata made the Ilyonectria fungi the dominant flora in soils, and I. cyclaminicola served as the main pathogen of continuous cropping diseases of G. elata, which could be reduced by rotation planting with P. impudicus.


Asunto(s)
Gastrodia , Micobioma , Bacterias , Hongos , Gastrodia/microbiología , Suelo , Microbiología del Suelo
8.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2309-2314, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531677

RESUMEN

This study aims to explore the resource utilization of used fungus-growing materials produced in the cultivation of Gastrodia elata. To be specific, based on the production practice, this study investigated the recycling mechanism of used fungus-growing materials of G. elata by Phallus inpudicus. To screen edible fungi with wide adaptability, this study examined the allelopathic effects of Armillaria mellea secretions on P. impudicus and 6 kinds of large edible fungi and the activities of enzymes related to degradation of the used fungus-growing materials of G. elata. The results showed that P. impudicus can effectively degrade cellulose, hemicellulose, and lignin in used fungus-growing materials of G. elata. The cellulase activity of A. mellea was significantly higher than that of P. impudicus, and the activities of lignin peroxidase, polyphenol oxidase, and xylanase of P. impudicus were significantly higher than those of A. mellea, which was the important reason why A. mellea and P. impudicus used different parts and components of the used fungus-growing materials to absorb carbon sources and develop ecological niche differences. The growth of P. impudicus was significantly inhibited on the used fungus-growing materials of G. elata. The secretions of A. mellea had allelopathic effects on P. impudicus and other edible fungi, and the allelopathic effects were related to the concentration of allelopathy substances. The screening result showed that the growth and development of L. edodes and A. auricular were not significantly affected by 30% of A. mellea liquid, indicating that they had high resistance to the allelopathy of A. mellea. The results showed that the activities of extracellular lignin peroxidase, polyphenol oxidase, and xylanase of the two edible fungi were similar to those of P. impudicus, and the cellulase activity was higher than that of P. impudicus. This experiment can be further verified by small-scale production tests.


Asunto(s)
Agaricales , Ascomicetos , Basidiomycota , Celulasas , Gastrodia , Catecol Oxidasa
9.
Zhongguo Zhong Yao Za Zhi ; 47(9): 2304-2308, 2022 May.
Artículo en Chino | MEDLINE | ID: mdl-35531676

RESUMEN

Mycena, a symbiont of Gastrodia elata, promotes seed germination of G. elata and plays a crucial role in the sexual reproduction of G. elata. However, the lack of genetic transformation system of Mycena blocks the research on the interaction mechanism of the two. In order to establish the protoplast transformation system of Mycena, this study analyzed the protoplast enzymatic hydrolysis system, screened the resistance markers and regeneration medium, and explored the transient transformation. After hydrolysis of Mycena hyphae with complexes enzymes for 8 h and centrifugation at 4 000 r·min~(-1), high-concentration and quality protoplast was obtained. The optimum regeneration medium for Mycena was RMV, and the optimum resistance marker was 50 mg·mL~(-1) hygromycin. The pLH-HygB-HuSHXG-GFP-HdSHXG was transformed into the protoplast of Mycena which then expressed GFP. The established protoplast transformation system of Mycena laid a foundation for analyzing the functional genes of Mycena and the molecular mechanism of the symbiosis of Mycena and G. elata.


Asunto(s)
Agaricales , Gastrodia , Gastrodia/genética , Protoplastos , Simbiosis/genética , Transformación Genética
10.
Zhongguo Zhong Yao Za Zhi ; 47(3): 628-634, 2022 Feb.
Artículo en Chino | MEDLINE | ID: mdl-35178944

RESUMEN

This study aimed to establish a method for synchronous detection of 14 mycotoxins in Pseudostellariae Radix and investigate its contamination with mycotoxins, so as to provide technical guidance for monitoring the quality of Chinese medicinal materials and medication safety. The sample was extracted with 80% acetonitrile in an oscillator for 1 h, purified using the modified QuEChERS purifying agent(0.1 g PSA + 0.3 g C_(18) + 0.3 g MgSO_4), and separated on a Waters HSS T3 chromatographic column(2.1 mm×100 mm, 1.8 µm). The gradient elution was carried out with 0.1% formic acid in water and acetonitrile, followed by the scanning in the multi-reaction monitoring(MRM) mode and the analysis of mycotoxin contamination in 26 Pseudostellariae Radix samples. The recovery rates of the established method were within the range of 82.17%-113.6%, with the RSD values less than 7% and the limits of quantification(LOQ) being 0.019-0.976 µg·kg~(-1). The detection rate of 14 mycotoxins in 26 batches of medicinal materials was 53.85%. The detection rate of sterigmatocystin(ST) was the highest, followed by those of zearalenone(ZEN), aflatoxin G_2(AFG_2), fumonisin B_1(FB_1), HT-2 toxin, and nivalenol(NIV). Their respective detection rates were 38.46%, 26.92%, 23.08%, 11.54%, 11.54%, and 7.69%, with the pollution ranges being 1.48-69.65, 0.11-31.05, 0.11-0.66, 0.28-0.83, 20.86-42.56, and 0.46-1.84 µg·kg~(-1), respectively. The established method for the detection of 14 mycotoxins is accurate, fast and reliable. The research results have very important practical significance for guiding the monitoring and prevention and control of exogenous fungal contamination of Chinese medicinal materials.


Asunto(s)
Aflatoxinas , Micotoxinas , Aflatoxinas/análisis , Cromatografía Líquida de Alta Presión/métodos , Contaminación de Medicamentos , Contaminación de Alimentos/análisis , Micotoxinas/análisis , Raíces de Plantas/química , Espectrometría de Masas en Tándem/métodos
11.
Schizophr Bull ; 48(1): 251-261, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34337670

RESUMEN

BACKGROUND: Thalamocortical circuit imbalance characterized by prefronto-thalamic hypoconnectivity and sensorimotor-thalamic hyperconnectivity has been consistently documented at rest in schizophrenia (SCZ). However, this thalamocortical imbalance has not been studied during task engagement to date, limiting our understanding of its role in cognitive dysfunction in schizophrenia. METHODS: Both n-back working memory (WM) task-fMRI and resting-state fMRI data were collected from 172 patients with SCZ and 103 healthy control subjects (HC). A replication sample with 49 SCZ and 48 HC was independently obtained. Sixteen thalamic subdivisions were employed as seeds for the analysis. RESULTS: During both task-performance and rest, SCZ showed thalamic hyperconnectivity with sensorimotor cortices, but hypoconnectivity with prefrontal-cerebellar regions relative to controls. Higher sensorimotor-thalamic connectivity and lower prefronto-thalamic connectivity both relate to poorer WM performance (lower task accuracy and longer response time) and difficulties in discriminating target from nontarget (lower d' score) in n-back task. The prefronto-thalamic hypoconnectivity and sensorimotor-thalamic hyperconnectivity were anti-correlated both in SCZ and HCs; this anti-correlation was more pronounced with less cognitive demand (rest>0-back>2-back). These findings replicated well in the second sample. Finally, the hypo- and hyper-connectivity patterns during resting-state positively correlated with the hypo- and hyper-connectivity during 2-back task-state in SCZ respectively. CONCLUSIONS: The thalamocortical imbalance reflected by prefronto-thalamic hypoconnectivity and sensorimotor-thalamic hyperconnectivity is present both at rest and during task engagement in SCZ and relates to working memory performance. The frontal reduction, sensorimotor enhancement pattern of thalamocortical imbalance is a state-invariant feature of SCZ that affects a core cognitive function.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Conectoma , Trastornos de la Memoria/fisiopatología , Memoria a Corto Plazo/fisiología , Red Nerviosa/fisiopatología , Corteza Prefrontal/fisiopatología , Esquizofrenia/fisiopatología , Corteza Sensoriomotora/fisiopatología , Tálamo/fisiopatología , Adulto , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Femenino , Humanos , Masculino , Trastornos de la Memoria/diagnóstico por imagen , Trastornos de la Memoria/etiología , Red Nerviosa/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico por imagen , Corteza Sensoriomotora/diagnóstico por imagen , Tálamo/diagnóstico por imagen
12.
Zhongguo Zhong Yao Za Zhi ; 45(9): 2036-2041, 2020 May.
Artículo en Chino | MEDLINE | ID: mdl-32495550

RESUMEN

Gastrodia elata is a kind of precious traditional Chinese medicine. In artificial cultivation, it has not got rid of its dependence on forest resources. In order to maintain the balance of the ecological system and reduce the waste of resources as much as possible, based on the information from field investigation at many places, this paper introduced the new ecological circulation planting patterns of G. elata, such as "forest-G. elata" supporting planting, G. elata-edible mushroom rotation, forest-G. elata-edible mushroom three-dimensional planting, fungus material classification planting technology, and so on. In this paper, we expounded the ecological problems solved by several planting patterns in G. elata production and analyzed their shortcomings. Finally, based on the exis-ting models, a complete ecological planting system of G. elata was summarized. This planting system emphasizes: ① The follow-up forests should be started before the planting of G. elata. And the economic forests were used to cultivation of G. elata. ② The classified utilization of fungus-growing materials. The leaves were used to cultivate germination bacteria of G. elata, the small branches were used to cultivate protocorm and juvenile tuber, the large branches were used to cultivate immature tuber, and the tree trunk was used to cultivate mature tuber. ③ Recycle utilization G. elata fungus material. The old fungus materials were used to produce strains or cultivate edible fungus. This design project not only solves the problems of the source of G. elata fungus material, the efficient utilization of fungus material and land resources, but also enriches the industrial structure. Using limited time and land resources to obtain greater economic benefits. It has certain guiding significance for poverty alleviation and ecological improvement.


Asunto(s)
Agaricales , Gastrodia , Bacterias , Medicina Tradicional China , Tubérculos de la Planta
13.
Zhongguo Zhong Yao Za Zhi ; 45(9): 2042-2045, 2020 May.
Artículo en Chino | MEDLINE | ID: mdl-32495551

RESUMEN

The technique of "simulative habitat cultivation" is to preserve the quality of traditional Chinese medicine by simulating the original habitat and site environment of wild Chinese medicine resources. Dendrobium nobile is the most representative variety of traditional Chinese medicine which reflects the coordinated development of medicinal material production and ecological environment. In this paper, the main technical points of the simulated cultivation model of D. nobile were summarized as follows: rapid propagation of seedling tissue technology to ensure the genetic stability of provenance; line card+fermented cow manure+live moss method to improve the survival rate; epiphytic stone cultivation to improve the quality of medicinal materials; and the integration of mycorrhizal fungi to improve the quality stability of medicinal materials. On the basis of summarizing the ecological benefits, economical and social benefits generated by the application of the technology, the paper systematically analyzes the principle of the technology for the cultivation of D. nobile to promote the excellent quality, the light, gas, heat and fertilizer resources of the undergrowth niche are in line with the wild site environment of D. nobile. The rich and complex soil microbial community in the forest laid the foundation for the species diversity needed for the growth of D. nobile.The stress effect on the growth of D. nobile resulted in the accumulation of secondary metabolites. The symbiotic relationship between the symbiotic fungi such as bryophytes and D. nobile promotes the synthesis of plant secondary metabolites. The high quality D. nobile was produced efficiently by improving and optimizing the cultivation techniques.


Asunto(s)
Dendrobium , Micorrizas , Animales , Bovinos , Ecosistema , Femenino , Medicina Tradicional China , Simbiosis
14.
Zhongguo Zhong Yao Za Zhi ; 45(3): 457-462, 2020 Feb.
Artículo en Chino | MEDLINE | ID: mdl-32237500

RESUMEN

Gastrodia elata is a kind of precious traditional Chinese medicine. In the process of cultivation of G. elata, due to the influence of continuous cropping obstacles and other factors, the fungus materials and land that have been planted with G. elata are often abandoned, resulting in a great waste of resources. Based on the planting characteristics of G. elata and Phallus impudicus and the previous research experience in ecological agriculture, this paper analyzed the ecological adaptability characteristics of G. elata and P. impudicus, and summarized the key techniques of the G. elata-P. impudicus sequential planting pattern. Keeping track of the planting area, fungus-growing materials consumption and market sales of G. elata-P. impudicus sequential planting pattern, the ecological benefits of G. elata-P. impudicus sequential planting pattern from the aspects of utilization rate of fungus-growing materials were analyzed, the value of land resources per unit area, ecological environmental protection, labor cost and economic benefits were consi-dered. The technical principle of G. elata-P. impudicus sequential planting pattern was expounded according to their ecological habit, the season of harvest and planting, the difference of composition of fungus-growing materials, and the microbial ecology. The sequential planting pattern of G. elata-P. impudicus not only realized the double production of medicinal materials and edible fungi, reduced the waste of old fungus-growing materials, but also transformed the energy from nutrition-supplied fungi to edible and medicinal fungi, which guaranteed the ecological recycling and utilization of G. elata in the process of cultivation.


Asunto(s)
Agaricales/crecimiento & desarrollo , Agricultura/métodos , Gastrodia/crecimiento & desarrollo , Plantas Medicinales/crecimiento & desarrollo , Medicina Tradicional China
15.
Zhongguo Zhong Yao Za Zhi ; 45(3): 472-477, 2020 Feb.
Artículo en Chino | MEDLINE | ID: mdl-32237502

RESUMEN

The phenomenon that waste of fungus-growing materials in the planting process of Gastrodia elata is very common. It has been proved by practice that the used fungus-growing materials planted with G. elata can be used to plant Phallus impudicus. But the mechanism is unclear. In this study, we compared the different infested-capacity of Armillaria gallica and Phallus impudicus by morphological anatomy of the used fungus-growing materials. We also compared the differences on the two fungi consumed the main contents of fungus-growing materials, cellulose, lignin and hemicellulose, by using nitric acid-95% ethanol method, sulfuric acid method and tetrabromide method respectively, so that to explore the mechanism of A. gallica and P. impudicus recycle the fungus-growing materials, and to provide scientific basis for recycling the used fungus-growing materials of G. elata. The results showed that A. gallica had a strong ability to invade some parts outside the vascular cambium, but it had a weak ability to invade some parts inside the vascular cambium, while P. impudicus had a strong ability to invade the same parts. The contents of lignin and cellulose, which from inside and outside the vascular cambium of fungus-growing materials were significantly different. In the parts of outside the vascular cambium of fungus-growing materials, A. gallica degraded more lignin and cellulose, while P. impudicus degraded more hemicellulose. In the parts of inside the vascular cambium of fungus-growing materials, A. gallica degraded more cellulose, while P. impudicus degraded more hemicellulose. The present results suggested that A. gallica and P. impudicus made differential utilization of the carbon source in the fungus-growing materials to realize that P. impudicus recycle the used fungus-growing materials of G. elata. A. gallica used lignin and cellulose as the main carbon source, while P. impudicus used hemicellulose as the main carbon source.


Asunto(s)
Agaricales/crecimiento & desarrollo , Armillaria/crecimiento & desarrollo , Celulosa/metabolismo , Lignina/metabolismo , Polisacáridos/metabolismo
16.
Zhongguo Zhong Yao Za Zhi ; 45(3): 478-484, 2020 Feb.
Artículo en Chino | MEDLINE | ID: mdl-32237503

RESUMEN

Fungal disease is an important factor restricting the healthy development of Gastrodia elata industry. The control of fungal disease in G. elata is an important issue in production. This paper makes a detailed investigation on the current situation of G. elata disease in China through statistics on the failure rate, rotten pit rate and occurrence rate of G. elata disease in the main producing areas of China. It was found that G. elata disease was mainly infected from the top bud and junction, causing the occurrence rate of disease was 6%-17%, and the yield decreased by 10%-30%. The 23 dominant fungi were isolated from 18 typical G. elata disease samples. Through identification of colony morphology, mycelium morphology, spore morphology and genetic characteristics, they were finally identified as 13 species, belonging to 7 families and 7 genera. Trichoderma harzianum, Ilyonectria sp. and Ilyonectria destructans are the most frequently separated. Their isolation frequency were 22.22%,16.67%,16.67% respectively. Ilyonectria sp. and I. destructans were the first time isolated from G. elata disease samples. They may be the main pathogens causing soil-borne diseases of G. elata. T. harzianum has certain potential as Gastrodia biocontrol bacteria. This study can provide a theoretical basis for the research and development of control technology of Gastrodia fungi disease.


Asunto(s)
Hongos/patogenicidad , Gastrodia/microbiología , Enfermedades de las Plantas/microbiología , China , Hongos/clasificación
17.
J Sep Sci ; 43(7): 1265-1274, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31961066

RESUMEN

The roots of Dipsacus asper Wall as a commonly used traditional Chinese medicine are used for tonifying liver and kidney and strengthening bones and muscles. However, an effective separation strategy for comprehensive and rapid separation of the main active compounds from the roots of D. asper is nonexistent. This investigation provided an effective separation method based on AB-8 macroporous resin column chromatography using different ratios of ethanol in water and two different modes of high-speed countercurrent chromatography with salt-containing solvent system for rapid enrichment and separation from the roots of D. asper. The macroporous resin column chromatography was performed on AB-8 resin using ethanol in water ratios of 10, 30, 40, 50, and 80% as the optimized enrichment conditions for iridoid glycosides and triterpenoid saponins with different polarities. For high-speed countercurrent chromatography separation, the conventional and recycling modes were combined together to develop a strategy for 12 compounds (1-12) from the enriched parts of 30, 40, and 80% ethanol, including six high-polarity iridoid glycosides (1-6) using inorganic salt-containing solvent system and six triterpenoid saponins (7-12). Recycling high-speed countercurrent chromatography separation was successfully applied to separate two isomers (9 and 10) after 11 cycles.


Asunto(s)
Dipsacaceae/química , Glicósidos Iridoides/aislamiento & purificación , Saponinas/aislamiento & purificación , Triterpenos/aislamiento & purificación , Distribución en Contracorriente , Glicósidos Iridoides/química , Medicina Tradicional China , Conformación Molecular , Raíces de Plantas/química , Sales (Química)/química , Saponinas/química , Estereoisomerismo , Triterpenos/química
18.
Front Plant Sci ; 10: 1259, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749814

RESUMEN

Plant cyclic peptides (CPs) are a large group of small molecule metabolites found in a wide variety of plants, including traditional Chinese medicinal plants. However, the majority of plant CPs have not been studied for their biosynthetic mechanisms, including heterophyllin B (HB), which is one of the characteristic chemical components of Pseudostellaria heterophylla. Here, we screened the precursor gene (prePhHB) of HB in P. heterophylla and functionally identified its correctness in vivo and in vitro. First, we developed a new method to screen the precursors of HB from 16 candidate linear peptides. According to transcriptome sequencing data, we cloned the genes that encoded the HB precursor peptides and confirmed that the prePhHB-encoded precursor peptide could enzymatically synthesize HB. Next, we generated the transgenic tobacco that expressed prePhHB, and the results showed that HB was detected in transgenic tobacco. Moreover, we revealed that prePhHB gene expression is positively correlated with HB accumulation in P. heterophylla. Mutations in the prePhHB gene may influence the accumulation of HB in P. heterophylla. These results suggest that HB is ribosomally synthesized and posttranslationally modified peptide (RiPP) derived from the precursor gene prePhHB-encoded precursor peptide, and the core peptide sequence of HB is IFGGLPPP in P. heterophylla. This study developed a new idea for the rapid identification of Caryophyllaceae-type CP precursor peptides via RNA-sequencing data mining.

19.
Mar Drugs ; 17(5)2019 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-31083588

RESUMEN

Refractory wound healing is one of the most common complications of diabetes. Excessive production of reactive oxygen species (ROS) can cause chronic inflammation and thus impair cutaneous wound healing. Scavenging these ROS in wound dressing may offer effective treatment for chronic wounds. Here, a nanocomposite hydrogel based on alginate and positively charged Eudragit nanoparticles containing edaravone, an efficient free radical scavenger, was developed for maximal ROS sequestration. Eudragit nanoparticles enhanced edaravone solubility and stability breaking the limitations in application. Furthermore, loading these Eudragit nanoparticles into an alginate hydrogel increased the protection and sustained the release of edaravone. The nanocomposite hydrogel is shown to promote wound healing in a dose-dependent way. A low dose of edaravone-loaded nanocomposite hydrogel accelerated wound healing in diabetic mice. On the contrary, a high dose of edaravone might hamper the healing. Those results indicated the dual role of ROS in chronic wounds. In addition, the discovery of this work pointed out that dose could be the key factor limiting the translational application of antioxidants in wound healing.


Asunto(s)
Alginatos/administración & dosificación , Hidrogeles/administración & dosificación , Nanocompuestos/administración & dosificación , Nanopartículas/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Alginatos/química , Animales , Materiales Biocompatibles/administración & dosificación , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Hidrogeles/química , Masculino , Ratones , Ratones Endogámicos C57BL , Nanocompuestos/química , Nanopartículas/química , Distribución Aleatoria , Especies Reactivas de Oxígeno/metabolismo
20.
Acta Pharmacol Sin ; 37(9): 1141-53, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27424655

RESUMEN

AIM: Major depressive disorder (MDD) is a debilitating mental disorder associated with dysfunction of the neurotransmitter-neuroendocrine system and neuroinflammatory responses. Salvianolic acid B (SalB) has shown a variety of pharmacological activities, including anti-inflammatory, antioxidant and neuroprotective effects. In this study, we examined whether SalB produced antidepressant-like actions in a chronic mild stress (CMS) mouse model, and explored the mechanisms underlying the antidepressant-like actions of SalB. METHODS: Mice were subjected to a CMS paradigm for 6 weeks. In the last 3 weeks the mice were daily administered SalB (20 mg·kg(-1)·d(-1), ip) or a positive control drug imipramine (20 mg·kg(-1)·d(-1), ip). The depressant-like behaviors were evaluated using the sucrose preference test, the forced swimming test (FST), and the tail suspension test (TST). The gene expression of cytokines in the hippocampus and cortex was analyzed with RT-PCR. Plasma corticosterone (CORT) and cerebral cytokines levels were assayed with an ELISA kit. Neural apoptosis and microglial activation in brain tissues were detected using immunofluorescence staining. RESULTS: Administration of SalB or imipramine reversed the reduced sucrose preference ratio of CMS-treated mice, and significantly decreased their immobility time in the FST and TST. Administration of SalB significantly decreased the expression of pro-inflammatory cytokines IL-1ß and TNF-α, and markedly increased the expression of anti-inflammatory cytokines IL-10 and TGF-ß in the hippocampus and cortex of CMS-treated mice, and normalized their elevated plasma CORT levels, whereas administration of imipramine did not significantly affect the imbalance between pro- and anti-inflammatory cytokines in the hippocampus and cortex of CMS-treated mice. Finally, administration of SalB significantly decreased CMS-induced apoptosis and microglia activation in the hippocampus and cortex, whereas administration of imipramine had no significant effect on CMS-induced apoptosis and microglia activation in the hippocampus and cortex. CONCLUSION: SalB exerts potent antidepressant-like effects in CMS-induced mouse model of depression, which is associated with the inhibiting microglia-related apoptosis in the hippocampus and the cortex.


Asunto(s)
Conducta Animal/efectos de los fármacos , Benzofuranos/uso terapéutico , Trastorno Depresivo Mayor/prevención & control , Medicamentos Herbarios Chinos/uso terapéutico , Neuroinmunomodulación/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Benzofuranos/administración & dosificación , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/inmunología , Corteza Cerebral/patología , Corticosterona/sangre , Citocinas/genética , Trastorno Depresivo Mayor/inmunología , Trastorno Depresivo Mayor/psicología , Medicamentos Herbarios Chinos/administración & dosificación , Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Hipocampo/patología , Masculino , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Estrés Psicológico/inmunología , Estrés Psicológico/psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA