Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(22): e2400665, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38526194

RESUMEN

The incidence rate of cancer is increasing year by year due to the aging of the population, unhealthy living, and eating habits. At present, surgery and medication are still the main treatments for cancer, without paying attention to the impact of individual differences in health management on cancer. However, increasing evidence suggests that individual psychological status, dietary habits, and exercise frequency are closely related to the risk and prognosis of cancer. The reminder to humanity is that the medical concept of the unified treatment plan is insufficient in cancer treatment, and a personalized treatment plan may become a breakthrough point. On this basis, the concept of "Humanistic Health Management" (HHM) is proposed. This concept is a healthcare plan that focuses on self-health management, providing an accurate and comprehensive evaluation of individual lifestyle habits, psychology, and health status, and developing personalized and targeted comprehensive cancer prevention and treatment plans. This review will provide a detailed explanation of the relationship between psychological status, dietary, and exercise habits, and the regulatory mechanisms of cancer. Intended to emphasize the importance of HHM concept in cancer prevention and better prognostic efficacy, providing new ideas for the new generation of cancer treatment.


Asunto(s)
Ejercicio Físico , Neoplasias , Humanos , Neoplasias/terapia , Progresión de la Enfermedad , Estado Nutricional
2.
Mol Genet Genomics ; 299(1): 15, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411753

RESUMEN

Tartary buckwheat protein (BWP) is well known for the wide-spectrum antibacterial activity and the lipid metabolism- regulating property; therefore, BWP can be applied as feed additives to improve the animal's nutritional supply. With the aim to investigate the bioactive actions of the BWP, growth performance, lipid metabolism and systemic immunity of the weaned piglets were measured, and the alterations of pig gut microbiota were also analyzed. According to the results, the growth performances of the weaned piglets which were calculated as the average daily gain (ADG) and the average daily feed intake (ADFI) were significantly increased when compared to the control group. Simultaneously, the serum levels of the total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) were decreased, while the levels of high-density lipoprotein cholesterol (HDL-C) were increased in the BWP group. Moreover, the relative abundances of Lactobacillus, Prevotella_9, Subdoligranulum, Blautia, and other potential probiotics in the gut microbiota of weaned piglets were obviously increased in the BWP group. However, the relative abundances of Escherichia-Shigella, Campylobacter, Rikenellaceae_RC9_gut_group and other opportunistic pathogens were obviously decreased in the BWP group. In all, BWP was proved to be able to significantly improve the growth performance, lipid metabolism, and systemic immunity of the weaned piglets, and the specific mechanism might relate to the alterations of the gut microbiota. Therefore, BWP could be explored as a prospective antibiotic alternative for pig feed additives.


Asunto(s)
Fagopyrum , Microbioma Gastrointestinal , Animales , Porcinos , Metabolismo de los Lípidos , Estudios Prospectivos , Antibacterianos , Colesterol
3.
J Ethnopharmacol ; 321: 117486, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38030027

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Taohe Chengqi Tang (JTCD) is a modified formulation of Traditional Chinese Medicine (TCM) known as Taohe Chengqi Decoction, which has been described in the ancient TCM literature "Treatise on Febrile Diseases". As a formula that can activate blood circulation and eliminate blood stasis and regulate Yin and Yang in traditional Chinese medicine applications, JTCD has been reported to be effective in the treatment of chronic liver disease and hepatic fibrosis (HF). AIM OF STUDY: The current study aimed to evaluate the effectiveness of JTCD in modulating hepatic macrophages by regulating the Notch signal pathway, and to further investigate the mechanisms underlying macrophage reprogramming that leads to HF. MATERIALS AND METHODS: Molecular assays were performed using in vitro cultures of human mononuclear THP-1 cells and human-derived hepatic stellate cells LX-2. CCl4-induced mice were utilized as an in vivo model to simulate HF. RESULTS: Our results demonstrated that JTCD exhibited dual effects by inhibiting hepatic stellate cell (HSCs) activation and modulating the polarisation of macrophages towards the M2 phenotype while decreasing the M1 phenotype. Network pharmacological analyses and molecular docking studies revealed that the Notch signal pathway was significantly enriched and played a crucial role in the therapeutic response of JTCD against HF. Moreover, through the establishment of a co-culture model, we validated that JTCD inhibited the Notch signal pathway in macrophages, leading to alterations in macrophage reprogramming, subsequent inhibition of HSC activation, and ultimately exerting anti-HF effects. CONCLUSION: In conclusion, our findings provide solid evidence for JTCD in treating HF, as it suppresses the Notch signal pathway in macrophages, regulates macrophage reprogramming, and inhibits HSC activation.


Asunto(s)
Cirrosis Hepática , Transducción de Señal , Ratones , Humanos , Animales , Simulación del Acoplamiento Molecular , Cirrosis Hepática/metabolismo , Macrófagos , Técnicas de Cocultivo , Células Estrelladas Hepáticas
4.
Int J Nanomedicine ; 18: 6469-6486, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026537

RESUMEN

Background: The respiratory system is intensely damaged by acute lung injury (ALI). The anti-inflammatory effects of tetramethylpyrazine (TMP) against ALI have been confirmed, but it exhibits a short half-life. miR-194-5p could directly target Rac1, but the internalization rate of miRNA cells was low. Purpose: To explore the potential of the soft mesoporous organic silica nanoplatform (NPs) as carriers for delivery of TMP and miR-194-5p through the tail vein. Methods: NPs@TMP and NPs@PEI@miR-194-5p were added to the HUVEC cell-lines, in vitro, to observe the cell uptake and cytotoxic effects. In vivo experiments were conducted by injecting fluorescently labeled NPs through the tail vein and tracking distribution. Therapeutic and toxic side-effects were analyzed systemically. Results: In vitro study exhibited that NPs have no toxic effect on HUVECs within the experimental parameters and have excellent cellular uptake. The IVIS Spectrum Imaging System shows that NPs accumulate mainly in the lungs. NPs@TMP treatment can improved oxidative stress and inflammation levels in ALI mice and inhibited the TLR4/NLRP3/caspase 1 pathway. NPs@PEI@miR-194-5p can inhibit the Rac1/ZO-1/occludin pathway and improved endothelial cell permeability in ALI mice. The co-treatment of NPs@TMP and NPs@PEI@miR-194-5p can significantly improved the survival rates of the mice, reduced pulmonary capillary permeability and improved pathological injury in ALI mice. Innovation: This study combined traditional Chinese medicine, bioinformatics, cellular molecular biology and nanobiomedicine to study the pathogenesis and treatment of ALI. The rate of cellular internalization was improved by changing the shape and hardness of nanoparticles. NPs@TMP and NPs@PEI@miR-194-5p combined application can significantly improve the survival condition and pathological injury of mice. Conclusion: NPs loaded with TMP and miR-194-5p showed a greater therapeutic effect in ALI mice.


Asunto(s)
Lesión Pulmonar Aguda , MicroARNs , Compuestos de Organosilicio , Pirazinas , Animales , Humanos , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Lipopolisacáridos , Pulmón/patología , MicroARNs/farmacología , Compuestos de Organosilicio/farmacología , Pirazinas/farmacología
5.
Food Funct ; 14(22): 10119-10134, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37882496

RESUMEN

Branched-chain amino acids (BCAAs) play a regulatory role in adipogenesis and energy balance. Therefore, this study aimed to investigate the impact of BCAA supplements, especially leucine (Leu) and valine (Val) supplementation, on lipid metabolism and related disorders in a finishing pig model. The results demonstrated that Leu (1%) and Val decreased serum as well as hepatic lipid accumulation. Moreover, metabolomics and lipidomics analyses revealed that Leu and Val markedly downregulated the level of various lipid species in the liver. This outcome may be explained by Leu and Val promoting cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathways. Leu and Val altered the fatty acid composition in distinct adipose tissues and decreased the levels of inflammatory factors. Additionally, they significantly decreased back fat thickness, and the results of the fatty acid profiles demonstrated that Leu and Val significantly increased the levels of monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) while decreasing those of saturated fatty acids (SFAs), especially in back fat and abdominal fat. Besides, Leu and Val restored glucose homeostasis by suppressing gluconeogenesis through the serine/threonine protein kinase (AKT)/transcription factor forkhead box O1 (FOXO1) signaling pathway in the liver and back fat. In summary, these results suggest that Leu and Val may serve as key regulators for modulating lipid metabolism and steatosis.


Asunto(s)
Metabolismo de los Lípidos , Valina , Porcinos , Humanos , Leucina/metabolismo , Valina/metabolismo , Gluconeogénesis , Aminoácidos de Cadena Ramificada/metabolismo , Inflamación , Ácidos Grasos/metabolismo , Lípidos , Animales
6.
Fitoterapia ; 170: 105643, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37544332

RESUMEN

The chemical analysis on the aerial sections of Eupatorium adenophorum Spreng. resulted in the identification of four unprecedented 5/5 fused bicyclosesquiterpenoids, eupatorid A (1), and its analogues named eupatorester A-C (2-4) using various chromatographic techniques. Their structures were unambiguously confirmed by detailed spectroscopic investigations (including 1D, 2D-NMR and HRMS), and single crystal X-ray diffraction. The anti-inflammatory activities, in vitro tumor growth inhibitory activities and antibacterial activities of these compounds were evaluated.


Asunto(s)
Ageratina , Ageratina/química , Estructura Molecular , Espectroscopía de Resonancia Magnética , Extractos Vegetales/química
7.
Am J Chin Med ; 51(6): 1413-1429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37429706

RESUMEN

Hepatic fibrosis (HF) is a wound healing response featuring excessive deposition of the extracellular matrix (ECM) and activation of hepatic stellate cells (HSCs) that occurs during chronic liver injury. As an initial stage of various liver diseases, HF is a reversible pathological process that, if left unchecked, can escalate into cirrhosis, liver failure, and liver cancer. HF is a life-threatening disease presenting morbidity and mortality challenges to healthcare systems worldwide. There is no specific and effective anti-HF therapy, and the toxic side effects of the available drugs also impose a heavy financial burden on patients. Therefore, it is significant to study the pathogenesis of HF and explore effective prevention and treatment measures. Formerly called adipocytes, or fat storage cells, HSCs regulate liver growth, immunity, and inflammation, as well as energy and nutrient homeostasis. HSCs in a quiescent state do not proliferate and store abundant lipid droplets (LDs). Catabolism of LDs is characteristic of the activation of HSCs and morphological transdifferentiation of cells into contractile and proliferative myofibroblasts, resulting in the deposition of ECM and the development of HF. Recent studies have revealed that various Chinese medicines (e.g., Artemisia annua, turmeric, Scutellaria baicalensis Georgi, etc.) are able to effectively reduce the degradation of LDs in HSCs. Therefore, this study takes the modification of LDs in HSCs as an entry point to elaborate on the process of Chinese medicine intervening in the loss of LDs in HSCs and the mechanism of action for the treatment of HF.


Asunto(s)
Células Estrelladas Hepáticas , Neoplasias Hepáticas , Humanos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/patología , Medicina Tradicional China , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Neoplasias Hepáticas/patología
8.
Eur J Pharmacol ; 952: 175824, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37263403

RESUMEN

Red ginseng is a classical processed product from Panax ginseng. C.A Meyer with many bioactive components formed through the Maillard reaction called Maillard reaction products. Maillard reaction refers to complex reversible reactions between amino acids or proteins and glycosides, which are used in food processing and storage, as well as in tobacco development, traditional Chinese medicine processing, and wine brewing. Arginyl-fructosyl-glucose (AFG) is a main non-saponin (ginsenoside) component produced in red ginseng processing, with high antioxidant, anti-apoptotic and neuroprotective efficiencies. However, its effects and mechanisms against oxidation stress in on the brain remain elusive. Therefore, this study aimed at exploring the therapeutic effect exerted by AFG on murine subacute brain aging induced by D-galactose (D-gal) and its potential molecular mechanism in the murine model, finding that AFG (40 and 80 mg/kg) significantly ameliorated D-gal-resulted changes in pathology. Besides, according to the transmission electron microscopy (TEM) and Western blot, AFG corrected the mitochondrial dysfunction resulted from ROS, thereby delaying the mice brain aging caused by D-gal.


Asunto(s)
Galactosa , Panax , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Galactosa/farmacología , Envejecimiento , Encéfalo/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Panax/química , Mitocondrias/metabolismo
9.
Phytother Res ; 37(7): 2827-2840, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37037488

RESUMEN

Previous reports have confirmed that saponins (ginsenosides) derived from Panax ginseng. C. A. Meyer exerted obvious memory-enhancing and antiaging effects, and the simpler the structure of ginsenosides, the better the biological activity. In this work, we aimed to explore the therapeutic effect and underlying molecular mechanism of 20(S)-protopanaxatriol (PPT), the aglycone of panaxatriol-type ginsenosides, by establishing D-galactose (D-gal)-induced subacute brain aging model in mice. The results showed that PPT treatment (10 and 20 mg/kg) for 4 weeks could significantly restore the D-gal (800 mg/kg for 8 weeks)-induced impaired memory function, choline dysfunction, and redox system imbalance in mice. Meanwhile, PPT also significantly reduced the histopathological changes caused by D-gal exposure. Moreover, PPT could increase TFEB/LAMP2 protein expression to promote mitochondrial autophagic flow. Importantly, the results from molecular docking showed that PPT had good binding ability with LAMP2 and TFEB, suggesting that TFEB/LAMP2 might play an important role in PPT to alleviate D-gal-caused brain aging.


Asunto(s)
Ginsenósidos , Panax , Ratones , Animales , Ginsenósidos/farmacología , Galactosa/efectos adversos , Simulación del Acoplamiento Molecular , Envejecimiento , Encéfalo/metabolismo , Panax/química
10.
Biomater Sci ; 11(13): 4411-4429, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37067845

RESUMEN

Malignant tumours are a serious threat to human health. Traditional chemotherapy has achieved breakthrough improvements but also has significant detrimental effects, such as the development of drug resistance, immunosuppression, and even systemic toxicity. Photothermal therapy (PTT) is an emerging cancer therapy. Under light irradiation, the phototherapeutic agent converts optical energy into thermal energy and induces the hyperthermic death of target cells. To date, numerous photothermal agents have been developed. Prussian blue (PB) nanoparticles are among the most promising photothermal agents due to their excellent physicochemical properties, including photoacoustic and magnetic resonance imaging properties, photothermal conversion performance, and enzyme-like activity. By the construction of suitably designed PB-based nanotherapeutics, enhanced photothermal performance, targeting ability, multimodal therapy, and imaging-guided cancer therapy can be effectively and feasibly achieved. In this review, the recent advances in PB-based photothermal combinatorial therapy and imaging-guided cancer therapy are comprehensively summarized. Finally, the potential obstacles of future research and clinical translation are discussed.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Fototerapia/métodos , Hipertermia Inducida/métodos , Nanopartículas/química , Neoplasias/tratamiento farmacológico
11.
Med Sci (Basel) ; 11(1)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36976529

RESUMEN

Qigong is a meditative movement with therapeutic effects and is commonly practiced in Eastern medicine. A growing body of evidence validates its health benefits, leading to mechanistic questions about how it works. We propose a novel mechanism by which the "acid" caused by hypoxia affects metabolism, and the way it is neutralized through Qigong practice involves the body's blood flow and vasculature modifications. Specifically, Qigong exercise generates an oxygen supply and acid-base balance against the hypoxic effects of underlying pathological conditions. We also propose that Qigong exercise mediated and focused on the local hypoxia environment of tissues might normalize the circulation of metabolic and inflammation accumulation in the tumor tissue and restore the normal metabolism of tissues and cells through calm, relaxation, and extreme Zen-style breathing that gravitates toward preemptive health and medicine. Thus, we propose the mechanisms of action related to Qigong, intending to unify Eastern and Western exercise theory.


Asunto(s)
Meditación , Qigong , Humanos , Terapia por Ejercicio , Ejercicio Físico , Oxígeno
12.
Anal Chem ; 95(10): 4634-4643, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36787441

RESUMEN

Cardiac tissue is sensitive to and can be easily damaged by exogenous electric stimulation. However, due to the thermal-electric coeffect and the limitation of in situ and quantitative information on the cardiac tissue function under electric stimulation, the detailed effect and the underlying mechanism of exogenous electric stimulation on the cardiac tissue remain elusive. To address this, in this work, we first constructed an in vitro cardiac tissue model and established a thermal-electric coupled theoretical model for simulating the electric field and temperature distributions around the cardiac tissue, from which we selected the electric field strengths (1.19, 2.37, and 3.39 kV cm-1) and electrical energies (0.001, 0.005, and 0.011 J) for electric stimulations without inducing a thermal effect. Then, we applied electric field stimulations on the cardiac tissue using these parameters and scanning electrochemical microscopy (SECM) to in situ and quantitatively monitor the dynamic changes in the key parameters of the cardiac tissue function, including respiratory activity, membrane permeability, and contraction frequency, after electric field stimulations. The SECM results showed that the oxygen consumption, cell membrane permeability coefficient, and contraction frequency of the cardiac tissue were strongly dependent on electrical energy, especially when the electrical energy was higher than 0.001 J. Our work, for the first time, achieves the in situ and quantitative monitoring of the cardiac tissue function under electric stimulation using SECM, which would provide important references for designing an electric stimulation regime for cardiac tissue engineering and clinical application of electrotherapy.


Asunto(s)
Terapia por Estimulación Eléctrica , Corazón , Microscopía Electroquímica de Rastreo , Estimulación Eléctrica , Ingeniería de Tejidos/métodos
13.
J Ethnopharmacol ; 305: 116059, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36549368

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Taohe Chengqi Decoction (JTCD) is a Traditional Chinese Medicine (TCM) formula modified from Taohe Chengqi Decoction in the classic ancient literature of TCM "Treatise on Febrile Diseases". Clinical and pharmacological studies have shown that JTCD has a therapeutic effect on hepatic encephalopathy, non-alcoholic fatty liver, cirrhotic ascites, and can alleviate acute liver injury in rats. Our previous studies confirmed that JTCD could alleviate hepatic fibrosis and activation of hepatic stellate cells (HSCs). However, its mechanism remains unclear. AIM OF THE STUDY: This study aimed to elucidate the mechanism of Src Signal on hepatic fibrosis and HSCs activation, and whether JTCD inhibited hepatic fibrosis and HSCs activation through affecting Src Signal. MATERIALS AND METHODS: In vivo, sixty specific pathogen free male C57/BL6 mice were divided into following six groups: Control group, Model group, SARA group, JTCD low dose group, JTCD medium dose group and JTCD high dose group. Then we established a carbon tetrachloride (CCL4)-induced hepatic fibrosis mice model, each JTCD group was given the corresponding dose of JTCD by gavage, the SARA group was given Saracatinib and the control group was given saline, once a day for 4 consecutive weeks. UPLC-Q-TOF-MS analyzed chemical components of JTCD. Pathological examination including Hematoxylin and Eosin (H&E), Masson and Sirius red staining was used to observe the characteristic of hepatic fibrosis. Automatic biochemical analyzer detected the levels of alanine aminotransfease (ALT), and aspartate transaminase (AST) in serum. Western-blot and immunohistochemical staining (IHC) detected protein expression. In vitro, we used shRNA to knock down the expression of Src in immortalized human hepatic stellate cell line (LX-2), then intervened with ERK1/2 agonists/inhibitors and JTCD-containing serum after transforming growth factor ß1 (TGF-ß1) treatment. Immunofluorescence and western-blot detected protein expression. The migratory characteristic of HSCs was assessed by wound-healing assay. RESULTS: We identified 135 chemical components in the water extract of JTCD, and the water extract of JTCD contains a variety of anti-hepatic fibrosis components. Compared to the model group, hepatic fibrosis performance was significantly improved, the serum levels of ALT and AST were significantly decreased in JTCD groups and SARA group, IHC staining and western blot results indicated that JTCD decreased the expressions of α-smooth muscle actin (α-SMA), phospho-Src (Tyr416), phospho-ERK1/2 and phospho-Smad3. In vitro, JTCD-containing serum could significantly decrease the protein expressions of α-SMA, phospho-Src (Tyr416), phospho-ERK1/2 and phospho-Smad3 according to the results of western-blot and immunofluorescence, in addition, JTCD-containing serum inhibited the mobility and activation of LX-2. What's more, after intervening with Src-shRNA, ERK1/2 agonists/inhibitors and JTCD-containing serum, the western-blot results showed that Src/ERK/Smad3 signal has an important role in hepatic fibrosis and HSCs, and JTCD attenuates hepatic fibrosis by preventing activation of HSCs through regulating Src/ERK/Smad3 signal pathway. CONCLUSIONS: The results showed that Src kinase promoted hepatic fibrosis and HSCs activation through the ERK/Smad3 signal pathway. More importantly, the mechanism by which JTCD attenuated hepatic fibrosis and HSCs activation was by inhibiting the Src/ERK/Smad3 signal pathway.


Asunto(s)
Células Estrelladas Hepáticas , Sistema de Señalización de MAP Quinasas , Animales , Humanos , Masculino , Ratones , Tetracloruro de Carbono/farmacología , Hígado , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , ARN Interferente Pequeño , Transducción de Señal , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
14.
Behav Sci (Basel) ; 12(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36546968

RESUMEN

Although previous studies have shown that perceived stress is positively related to problematic smartphone use, knowledge of mediating and moderating mechanisms underpinning this relationship is quite limited. In this study, we explored whether experiential avoidance mediated the relationship between perceived stress and problematic smartphone use and whether trait mindfulness moderated this mediating process. A total of 763 Chinese college students completed the measures of perceived stress, experiential avoidance, problematic smartphone use, and trait mindfulness. The results indicate that perceived stress was positively related to problematic smartphone use and this relation was partially mediated by experiential avoidance. Furthermore, moderated mediation analysis showed that trait mindfulness moderated the linkage between perceived stress and problematic smartphone use via experiential avoidance. This link became weaker for college students with higher levels of trait mindfulness. The results highlight the value of identifying the underlying mechanisms between perceived stress and college students' problematic smartphone use.

15.
Food Funct ; 13(21): 11283-11297, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36226633

RESUMEN

Cisplatin-evoked profound gastrointestinal symptomatology is one of the most common side effects of chemotherapy drugs, further causing gastrointestinal cell damage, diarrhea and vomiting. Panax ginseng C. A. Meyer, a widely used medicinal and edible plant in China, shows many pharmacological activities. Nevertheless, the role of non-saponin is less known and has great potential in the treatment of severe toxic side effects related to the cisplatin treatment. The present work evaluates the efficiency of a major Maillard reaction product (MRP) of red ginseng, arginyl-fructosyl-glucose (AFG), against cisplatin-evoked intestinal toxicity in vivo and vitro, and the underlying possible mechanisms are also explored. The cisplatin-treated mice (a dose of 20 mg kg-1 for one time) showed serious intestinal mucosa damage accompanied by increased indicators of diamine oxidase (DAO) and decreased expression of tight junction proteins zonula occludens-1 (ZO-1) and occludin. Moreover, cisplatin exposure increased intestinal cell apoptosis with decreased expression of Bcl-2 and increased expression of Bax and cleaved-caspase 3/9 as well as NF-κB related proteins. Interestingly, the supplements of AFG at doses of 40 and 80 mg kg-1 day-1 for 10 days significantly ameliorated these changes. It was also demonstrated in cultured IEC-6 cells that AFG enhanced the expression levels of apoptotic proteins during cisplatin exposure and reduced the sensitivity of IEC-6 cells to cisplatin by inhibiting the activation of GSK3ß and up-regulating the protein expression of ß-catenin. In conclusion, AFG exerted protective effects against cisplatin-induced intestinal toxicity, at least partially by the inhibition of NF-κB-mediated apoptosis, via regulating Wnt/ß-catenin signaling pathway.


Asunto(s)
Cisplatino , Panax , Ratones , Animales , Cisplatino/toxicidad , Productos Finales de Glicación Avanzada/farmacología , FN-kappa B/genética , FN-kappa B/metabolismo , Panax/metabolismo , Apoptosis
16.
Am J Chin Med ; 50(8): 2033-2056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36222119

RESUMEN

Ginsenoside Rg5 (G-Rg5) is a rare ginsenoside isolated from ginseng (Panax ginseng C.A. Meyer), and this compound is increasingly known for its potent pharmacological activities. This study aimed to provide a comprehensive review of the main activities and mechanisms of G-Rg5 by adopting network pharmacological analysis combined with a summary of published articles. The 100 target genes of G-Rg5 were searched through available database, subjected to protein-protein interaction (PPI) network generation and then core screening. The results showed that G-Rg5 has promising anticancer and neuroprotective effects. By summarizing these two pharmacological activities, we found that G-Rg5 exerts its therapeutic effects mainly through PI3K/AKT, MAPK signaling pathways, and the regulation of apoptosis and cell cycle. And these results were corroborated by KEGG analysis. Likewise, molecular docking of the related proteins was performed, and the binding energies were all less than [Formula: see text]7.0[Formula: see text]kJ/mol, indicating that these proteins had excellent binding capacity with G-Rg5. The network pharmacology results revealed many potential G-Rg5 mechanisms, which need to be further explored. We expect that the network pharmacology approach and molecular docking techniques can help us gain a deeper understanding of the therapeutic mechanisms of different ginsenosides and even the ginseng plant, for further developing their therapeutic potential as well as clinical applications.


Asunto(s)
Ginsenósidos , Panax , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Neuroprotección , Simulación del Acoplamiento Molecular , Farmacología en Red , Panax/química
17.
Front Psychol ; 13: 987537, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262438

RESUMEN

The Physical Exercise Rating Scale, Mindfulness Attention Awareness Scale (MAAS), Ruminative Thinking Scale (RRS), and Pittsburgh Sleep Quality Index (PSQI) are used to conduct the questionnaire among a sample of 1,006 college students (average age = 19.95 years, SD = 1.86 years) to figure out whether there is any correlation between physical exercise and sleep quality in college students as well as how the mechanism of mindfulness and ruminative thinking plays a role in them. For data analysis, the Harman single-factor test was used; for the common method deviation test, Pearson's correlation analysis, and the mediating effect tested by using the bootstrap method were carried out. Results: (1) Overall, 34% (PSQI ≥ 8) of college students' sleep quality is poor. (2) The PSQI is positively correlated with ruminative thinking, while both are negatively correlated with the level of physical exercise and mindfulness; the level of physical exercise is positively correlated with the level of mindfulness. (3) Physical exercise can significantly negatively predict sleep quality (ß = -0.08, P < 0.05), significantly positively predict mindfulness (ß = 0.12, P < 0.001), and significantly negatively predict ruminative thinking (ß = -0.07, P < 0.05). When participate in physical exercise, mindfulness, and ruminative thinking enter the regression equation at the same time, only mindfulness and ruminative thinking can predict sleep quality(ß = -0.15, P < 0.001) significantly negatively predicted sleep quality and ruminative thinking (ß = 0.22, P < 0.001) significantly positively predicted sleep quality, while physical exercise (ß = -0.04, P > 0.05) had no significant predictive effect on sleep quality. (4) After controlling for age and gender, physical exercise appears to have an impact on sleep quality of college students through the independent intermediary role of mindfulness and ruminative thinking and the chain intermediary role of mindfulness and ruminative thinking, with a total mediating effect value of -0.007. This study reveals the relationship between physical exercise and sleep quality, as well as its mechanism, thus guiding college students to actively participate in physical exercise. It also provides corresponding suggestions to improve sleep quality as well as physical and mental health in college students.

18.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077586

RESUMEN

Mikania micrantha, recognized as one of the world's top 10 pernicious weeds, is a rapidly spreading tropical vine that has invaded the coastal areas of South China, causing serious economic losses and environmental damage. Rapid stem growth is an important feature of M. micrantha which may be related to its greater number of genes involved in auxin signaling and transport pathways and its ability to synthesize more auxin under adverse conditions to promote or maintain stem growth. Plant growth and development is closely connected to the regulation of endogenous hormones, especially the polar transport and asymmetric distribution of auxin. The PIN-FORMED (PIN) auxin efflux carrier gene family plays a key role in the polar transport of auxin and then regulates the growth of different plant tissues, which could indicate that the rapid growth of M. micrantha is closely related to this PIN-dependent auxin regulation. In this study, 11 PIN genes were identified and the phylogenetic relationship and structural compositions of the gene family in M. micrantha were analyzed by employing multiple bioinformatic methods. The phylogenetic analysis indicated that the PIN proteins could be divided into five distinct clades. The structural analysis revealed that three putative types of PIN (canonical, noncanonical and semi-canonical) exist among the proteins according to the length and the composition of the hydrophilic domain. The majority of the PINs were involved in the process of axillary bud differentiation and stem response under abiotic stress, indicating that M. micrantha may regulate its growth, development and stress response by regulating PIN expression in the axillary bud and stem, which may help explain its strong growth ability and environmental adaptability. Our study emphasized the structural features and stress response patterns of the PIN gene family and provided useful insights for further study into the molecular mechanism of auxin-regulated growth and control in M. micrantha.


Asunto(s)
Mikania , Ácidos Indolacéticos/metabolismo , Mikania/genética , Mikania/metabolismo , Filogenia , Desarrollo de la Planta , Malezas/metabolismo
19.
Phytomedicine ; 104: 154341, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35870376

RESUMEN

BACKGROUND: Aging is an inevitable gradual process of the body, which can cause dysfunction or degeneration of the nervous or immune system, thus becoming a critical pathogenic factor inducing neurodegenerative diseases. Previous reports have confirmed that saponins (ginsenosides) derived from Panax ginseng. C.A. Meyer exerted obvious memory-enhancing and anti-aging effects, and the simpler the structure of ginsenosides, the better the biological activity. Ginsenoside Rg2 (Rg2) is a prominent and representative panaxatriol-type ginsenoside produced during ginseng processing, which has been reported to have pretty good neuroprotective activity. PURPOSE: The work was aimed at exploring the therapeutic effects and possible molecular mechanisms of Rg2 by establishing the subacute brain aging model induced by D-galactose (D-gal) in mice. METHODS: The anti-aging activity of G-Rg2 (10, 20 mg/kg for 4 weeks) was assessed using the D-gal induced brain aging model (800 mg/kg for 8 weeks). The Morris water maze (MWM) and histopathological analysis were used to evaluate the cognitive function and pathological changes of the brain in mice, respectively. The protein expression levels of p53, p21, p16ink4α, IL-6, CDK4, ATG3, ATG5, ATG7, LC3, p62, LAMP2, and TFEB were quantified through western blot analysis. The degree of mitochondrial damage and the number of mitochondrial autophagolysosomes in hippocampal neurons were monitored using TEM analysis. RESULTS: The results showed that Rg2 could significantly restore D-gal-induced impaired memory function, choline dysfunction, and redox system imbalance in mice. Rg2 treatment also considerably decreased the over-expression of aging-related proteins such as p53/p21/p16ink4α induced by D-galactose, which demonstrated that Rg2 possessed good anti-aging activity. Meanwhile, Rg2 could evidently reduce the pathological changes caused by D-gal exposure. Moreover, the results from transmission electron microscopy and western blot analysis indicated that Rg2 could delay the brain aging induced by D-gal in mice via promoting the degradation of the autophagy substrate p62 while increasing the protein expression level of LAMP2/TFEB to maintain mitochondrial function. CONCLUSION: These results indicate that Rg2 could postpone brain aging by increasing mitochondrial autophagy flux to maintain mitochondrial function, which greatly enriched the research on the pharmacological activity of ginsenosides for delaying brain aging.


Asunto(s)
Ginsenósidos , Panax , Envejecimiento , Animales , Autofagia , Galactosa/farmacología , Ginsenósidos/metabolismo , Ginsenósidos/farmacología , Hipocampo , Ratones , Mitocondrias/metabolismo , Panax/química , Proteína p53 Supresora de Tumor/metabolismo
20.
Am J Chin Med ; 50(4): 1113-1131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35475974

RESUMEN

Although growing evidence has shown that ginsenosides from stems and leaves of Panax ginseng (GSLS) exercise a protective impact on the central nervous system, in the model of memory damage induced by scopolamine, it is still rarely reported. Thus, the mechanism of action needs to be further explored. This study was to investigate the effect of GSLS on scopolamine (SCOP)-induced memory damage and the underlying mechanism. Male ICR mice were treated with SCOP (3 mg/kg) for 7 days, with or without GSLS (75 and 150 mg/kg) treatment for 14 days. After GSLS treatment, the memory damage induced by SCOP was significantly ameliorated as shown by the improvement of cholinergic function (AChE and ChAT), brain tissue hippocampus morphology (H&E staining), and oxidative stress (MDA, GSH, and NO). Meanwhile, immunohistochemical assay suggested that GSLS increased the expression of brain-derived neurotrophic factor (BDNF) and Tyrosine Kinase receptor B (TrkB). Further mechanism research indicated that GSLS inhibited the Tau hyperphosphorylation and cell apoptosis by regulating the PI3K/AKT pathway and inhibited neuroinflammation by regulating the NF-κB pathway, thereby exerting a cognitive impairment improvement effect. This work suggested that GSLS could protect against SCOP-induced memory defects possibly through inhibiting oxidative stress, inhibiting neuroinflammation and cell apoptosis.


Asunto(s)
Ginsenósidos , Panax , Animales , Ginsenósidos/farmacología , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/prevención & control , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas/metabolismo , Hojas de la Planta , Escopolamina/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA