Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Nat Med ; 78(3): 488-504, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38530577

RESUMEN

Osteoporosis (OP) is closely related to iron overload. Bajitianwan (BJTW) is a traditional Chinese medicine formulation used for treating senile diseases such as dementia and osteoporosis. Modern pharmacological researches have found that BJTW has beneficial effect on bone loss and memory impairment in aging rats. This paper aimed to explore the role and mechanism of BJTW in ameliorating iron overload-induced bone loss. Furthermore, BJTW effectively improved the bone micro-structure of the femur in mice, and altered bone metabolism biomarkers alkaline phosphatase (ALP) and osteocalcin (OCN) in serum, as well as oxidative indexes superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) glutathione (GSH) and malondialdehyde (MDA) in liver. As for network pharmacology, 73 components collected from BJTW regulated 99 common targets merged in the BJTW and OP. The results of RNA-seq indicated that there were 418 potential targets in BJTW low dose group (BJTW-L) and 347 potential targets in BJTW high dose group (BJTW-H). Intriguingly, both PI3K-AKT signaling pathway and the AGEs-RAGE signaling pathway were contained in the KEGG pathways enrichment results of network pharmacology and transcriptomics, which were considered as the potential mechanism. Additionally, we verified that BJTW regulated the expression of related proteins in RAGE/PI3K-AKT pathways in MC3T3-E1 cells. In summary, BJTW has potent effect on protecting against iron overload-induced OP, and its mechanism may be related to the activation of the RAGE/PI3K-AKT signaling pathways.


Asunto(s)
Medicamentos Herbarios Chinos , Sobrecarga de Hierro , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Sobrecarga de Hierro/tratamiento farmacológico , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Masculino , Osteoporosis/tratamiento farmacológico , Perfilación de la Expresión Génica
2.
Artículo en Inglés | MEDLINE | ID: mdl-37515912

RESUMEN

Traditional Chinese medicine (TCM) is characterized by its multiple components. The utilization of mathematical statistical methods to integrate the pharmacokinetics of monomer components can provide a comprehensive understanding of the holistic pharmacokinetic process of TCM. Two distinct integrated methods, namely the correlation coefficient method and the AUC-based weight coefficient method, were employed in this study to elucidate and compare their differences in the integrated pharmacokinetic research of Fangji Huangqi decoction (FHD). FHD is commonly used in clinical practice to treat the nephrotic syndrome. Firstly, one-dose FHD was given to doxorubicin-induced nephropathy (DN) rats, and the prototype compounds of FHD and their metabolites in plasma were qualitatively and semi-quantitatively analyzed by UHPLC-MS/MS. Secondly, the efficacy of FHD was quantitatively characterized by the relative distance method based on metabolomics. The correlation coefficients were obtained by analyzing the correlation between efficacy (relative distance values) and the content of compound, and they were subsequently used for the model integration (correlation coefficient method). Thirdly, the effective compounds of FHD treating DN were screened by integrating network pharmacology and molecular docking, and they were used for another integrated pharmacokinetic model by AUD-based weight coefficient method. Finally, the 2 integrated methods and the 2 integrated pharmacokinetic models were compared. In this study, 30 prototype compounds and 41 metabolites of FHD in plasma were identified, and the pharmacokinetic curve of 18 prototype compounds were built. The efficacy of FHD in the treatment of DN has been relatively quantitation. The 2 established integrated pharmacokinetic models of FHD indicated that the correlation coefficient method was the optimal approach for conducting the integrated pharmacokinetic research on the TCM with unknown effective compounds, whereas the AUC-based coefficient method was suitable for the TCM with the clear effective compounds. The integrated pharmacokinetic models indicated that FHD had high bioavailability and an absorption peak at about 6 h after administration, indicating that the 6 h after administration was the critical period of FHD treating DN. This research would be helpful for the pharmacological and pharmacokinetic research of FHD, and provide a method reference for the integrated pharmacokinetic research of TCM.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Animales , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China/métodos , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem/métodos
3.
J Ethnopharmacol ; 308: 116219, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36758912

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Salvianolic acid A (SAA) is the main active component of the classic anti-atherosclerotic drug Salvia miltiorrhiza Bunge. Inflammation-induced infiltration of monocyte/macrophages into the vascular wall is the initiating step in atherogenesis, and targeted blocking of this step may provide a promising avenue for the precise treatment of atherosclerosis. However, the effect of salvianolic acid A on macrophages is still unknown. AIM OF THE STUDY: To evaluate the effect of SAA on macrophage infiltration and the underlying mechanism of SAA against atherosclerosis. MATERIALS AND METHODS: Vascular endothelial cells were stimulated with lipopolysaccharide (LPS) to simulate the inflammatory environment, and its effect on monocyte/macrophages was evaluated. Mass spectrometry was used to identify the proteins that play a key role and further validated them. LncRNA sequencing, western blot analysis, RNA immunoprecipitation, and RNA pulldown were used to elucidate the mechanism of SAA against atherosclerosis. Finally, ApoE-/- mice were fed a high-fat diet to creat an in vivo atherosclerosis model. Secretory GRP78 content, lipid levels, plaque area, macrophage infiltration, and degree of inflammation were assessed by standard assays after 16 weeks of intragastric administration of SAA or biweekly tail vein injections of GRP78 antibody. RESULTS: After LPS stimulation, the increased secretion of GRP78 recruits circulating monocyte/macrophages and drives monocyte/macrophage adhesion and invasion into the vascular intima to promote atherosclerosis progression. Interestingly, SAA exerts anti-atherosclerosis effects by inhibiting the secretion of GRP78. Further mechanistic studies indicated that SAA upregulates the expression of lncRNA NR2F2-AS1, which reverses the abnormal localization of the KDEL receptor (KDELR) caused by inflammation. It promotes the homing of GRP78 from the Golgi apparatus to the endoplasmic reticulum rather than secreting outside the cell. CONCLUSION: SAA alleviates atherosclerosis by inhibiting GRP78 secretion via the lncRNA NR2F2-AS1-KDELR axis. The findings not only provide a new direction for the precise therapy of atherosclerosis based on secretory GRP78 but also elucidate the pharmacological mechanism of SAA against atherosclerosis, putting the foundation for further development and clinical application of SAA drugs.


Asunto(s)
Aterosclerosis , ARN Largo no Codificante , Ratones , Animales , Células Endoteliales/metabolismo , Chaperón BiP del Retículo Endoplásmico , Lipopolisacáridos , Aterosclerosis/tratamiento farmacológico , Inflamación
4.
J Ethnopharmacol ; 305: 116074, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36577490

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Astragali Radix (AR) is the dried root of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or A. membranaceus (Fisch.) Bge. AR was the main medicine in a Chinese traditional prescription called Fangji Huangqi Decoction, and it has been used to treating nephrotic syndrome (NS) for thousands of years in China. In recent years, AR has been evidenced to have anti-inflammatory activity, antihyperglycemic activity, antioxidant activity, etc. There are two mainstream commodities for ARs in the market including the imitation wild AR and transplanted AR. However, it is not clear whether the imitation wild AR or transplanted AR and which kind of component, astragalus saponin, astragalus flavonoid or astragalus polysaccharide, makes a bigger contribution in treating NS. And the exact molecular mechanism is not fully understood. AIM OF THE STUDY: To explore which kind of AR and which kind of component in AR makes the bigger contribution in treating NS, and exploring the molecular mechanism. MATERIALS AND METHODS: Firstly, HPLC-UV/ELSD was used for quantitative determination of the constituents in different ARs. Secondly, the efficacy of different ARs treating doxorubicin-induced nephropathy (DN) was compared by metabolomics. Thirdly, the protective effects of different constituents from ARs on the damage of MPC5 cells induced by adriamycin are validated. Finally, the effective constituents and mechanism of ARs against doxorubicin-induced nephropathy were investigated by network pharmacology and molecular docking. RESULTS: Quantitative determination experiment and pharmacological experiment indicated that the AR produced from Gansu province (China) (transplanted AR) with a higher proportion of total saponins, has better efficacy in the treatment for DN. And the cell experiment validated the result that astragalus saponins has the better efficacy in protecting the podocyte against injury than astragalus flavonoids and polysaccharides. The network pharmacology and molecular docking study indicated that astragalus saponins were the main constituent of AR in the treatment for DN. The mechanism may involve in GnRH signaling pathway, VEGF signaling pathway and metabolic pathways, especially of bilirubin metabolism. CONCLUSIONS: Transplanted AR has better efficacy in the treatment for NS than imitation wild AR, astragalus saponins have better efficacy in the treatment for NS than astragalus flavonoids and polysaccharides.


Asunto(s)
Planta del Astrágalo , Medicamentos Herbarios Chinos , Enfermedades Renales , Saponinas , Humanos , Simulación del Acoplamiento Molecular , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Doxorrubicina , Saponinas/farmacología , Saponinas/uso terapéutico , Flavonoides/farmacología , Polisacáridos
5.
Artículo en Inglés | MEDLINE | ID: mdl-36462401

RESUMEN

Fangji Huangqi Tang (FHT) was first recorded in "Jin Gui Yao Lue," invented by the archaic Chinese medical doctor Zhongjing Zhang, and is a classic medicine that tonifies qi and expels wind, invigorates spleen for diuresis. A large number of literatures indicated that FHT showed a significant effect on Nephrotic Syndrome (NS). A comprehensive strategy was proposed to discover the potential effective compounds and therapeutic targets of FHT against NS as a case study. Serum metabolomics combined with multivariate statistical analysis was employed to analysis and screen the differential endogenous metabolites in serum samples of the control and model rats induced by Adriamycin. The correlation analysis between the efficacy biomarkers and different compounds absorbed in serum of FHT was conducted to explore the potential effective compounds of FHT against NS. With the help of network pharmacology, the therapeutic targets and the possible molecular mechanisms of FHT against NS were further investigated. Fifteen metabolites, including l-phenylalanine, 3-Hydroxybutyric acid and linolenic acid, were associated with renal damage based on the serum metabolomic results. Metabolic pathway analysis indicated that phenylalanine, tyrosine and tryptophan biosynthesis and linoleic acid metabolism were the key pathways associated with NS. Among them, 6 metabolites were defined as efficacy biomarkers such as uric acid, 2-methylbutyrylcarnitine and 10-HDA. The results of correlation analysis suggested that 14 constituents such as fanGhinoline, cycloastragenol, atractylenolide III, and glycyrrhetinic acid were recognized as potential effective compounds, whose potential protein targets participated in the MAPK signaling pathway, GnRH signaling pathway and aldoaterone-regulated sodium reabsorption. This study has clarified the potential effective compounds and therapeutic targets of FHT against NS. The results provided new evidence for the pharmacological mechanism of FHT on NS.


Asunto(s)
Medicamentos Herbarios Chinos , Síndrome Nefrótico , Ratas , Animales , Síndrome Nefrótico/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Riñón , Metabolómica/métodos , Biomarcadores , Doxorrubicina
6.
J Chromatogr Sci ; 61(9): 852-862, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36250324

RESUMEN

Fangji Huangqi Decoction (FHD) is a classic prescription of traditional Chinese medicine which is recorded in "Jin Gui Yao Lue". The purpose of this study is to develop a method for simultaneous determination multicomponent in FHD. The separation of the 19 compounds that included calycosin, calycosin-7-O-ß-D-glucoside, formononetin, ononin, methylnissolin, methylnissolin-3-O-glucoside, isomucronulatol, tetrandrine, fangchinoline, atractylenolide-I, atractylenolide-III, liquiritigenin, liquiritin, isomucronulatol-7-O-ß-D-glucoside, astragaloside-I, astragaloside-II, astragaloside-III, astragaloside-IV and glycyrrhetinic acid were achieved by linear gradient elution. The 19 components were identified by comparing the chromatographic peaks with the reference compounds and were quantitatively analyzed by multiple reaction monitoring. This method was strict validated with recovery (96.10-101.70%), precision [relative standard deviation (RSD), 1.34-3.34%], stability (RSD, 1.49-3.80%) and repeatability (RSD, 1.60-3.49%), respectively. All the compounds showed good linearities (R2 > 0.999). The limit of detection (LOD) and limit of quantitation (LOQ) for the 19 compounds were in the range of 0.03-0.27 µg/mL (LODs) and 0.05-1.23 µg/mL (LOQs). The correlation analysis indicated that astragalus flavonoids were negatively correlated with astragalosides, tetrandrine and their corresponding flavonoid glycosides, and atractylenolides were positively correlated with astragalosides and fangchinoline. This method proved to be reliable and effective, which would give a helpful basis for the quality control, pharmacological and pharmacokinetic of FHD.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Ratas , Animales , Espectrometría de Masas en Tándem/métodos , Ratas Sprague-Dawley , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Glucósidos/química , Flavonoides/análisis
7.
Environ Sci Pollut Res Int ; 30(2): 4642-4652, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35974265

RESUMEN

Adsorption technology can effectively remove phosphorus from water and realize phosphorus recovery. Hence, it is used to curb the eutrophication of water and alleviate the crisis caused by the shortage of phosphorus resources. Resin has been attracting increasing interest as an ideal adsorption material; however, its practical application is greatly affected by environmental factors. To solve the competitive adsorption and pore blockage caused by humic acid and coexisting ions during the removal of phosphorus by ion-exchange resin, this study has developed an iron-manganese oxide-modified resin composite adsorbent (Fe/Mn-402) based on the nanoconfinement theory. The structural characterization results of XRD, FT-IR, SEM, and XPS showed that the iron-manganese binary oxide was successfully loaded on the skeleton of the strongly alkaline anion resin and showed good stability under both neutral and alkaline conditions. The batch adsorption experiments showed that the maximum adsorption capacity of Fe/Mn-402 for phosphorus can reach up to 50.97 mg g-1 under the optimal raw material ratio (Fe:Mn = 1:1). In addition, Fe/Mn-402 shows good selectivity for phosphorus removal. Fe/Mn-402 can maintain good adsorption performance for phosphate even under high concentrations of SO42-, HCO3-, and humic acid. The regenerated Fe/Mn-402 can be recycled without any obvious change in its treatment capacity. Hence, it is suitable for stable, long-term usage. In general, this work puts forward a new idea for the development of phosphorus-removal adsorbents for the treatment of wastewater containing coexisting ions and HA.


Asunto(s)
Manganeso , Contaminantes Químicos del Agua , Manganeso/química , Hierro/química , Fosfatos , Sustancias Húmicas/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Óxidos/química , Agua , Fósforo , Adsorción , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno
8.
Foods ; 12(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38231847

RESUMEN

As a traditional and popular dietary supplement, lotus rhizome starch (LRS) has health benefits for its many nutritional components and is especially suitable for teenagers and seniors. In this paper, the approximate composition, apparent amylose content (AAC), and structural characteristics of five LRS samples from different regions were investigated, and their correlations with the physicochemical properties of granular and gelatinized LRS were revealed. LRS exhibited rod-shaped and ellipsoidal starch granules, with AAC ranging from 26.6% to 31.7%. LRS-3, from Fuzhou, Jiangxi Province, exhibited a deeper hydrogel color and contained more ash, with 302.6 mg/kg iron, and it could reach the pasting temperature of 62.6 °C. In comparison, LRS-5, from Baoshan, Yunnan Province, exhibited smoother granule surface, less fragmentation, and higher AAC, resulting in better swelling power and freeze-thaw stability. The resistant starch contents of LRS-3 and LRS-5 were the lowest (15.3%) and highest (69.7%), respectively. The enzymatic digestion performance of LRS was positively correlated with ash content and short- and long-term ordered structures but negatively correlated with AAC. Furthermore, the color and network firmness of gelatinized LRS was negatively correlated with its ash content, and the retrograde trend and freeze-thaw stability were more closely correlated with AAC and structural characteristics. These results revealed the physicochemical properties of LRS from different regions and suggested their advantages in appropriate applications as a hydrogel matrix.

9.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36499624

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and has become a growing public health concern worldwide. Polyphenols may improve high-fat diet (HFD)-related NAFLD. Our previous study found that ferulic acid (FA) and p-coumaric acid (p-CA) were the polyphenols with the highest content in foxtail millet. In this study, we investigated the mechanism underlying the impact of ferulic acid and p-coumaric acid (FA/p-CA) on non-alcoholic fatty liver (NAFLD). The association of FA and p-CA with fatty liver was first analyzed by network pharmacology. Synergistic ameliorating of NAFLD by FA and p-CA was verified in oleic acid (OA) and palmitic acid (PA) (FFA)-treated hepatocytes. Meanwhile, FA/p-CA suppressed final body weight and TG content and improved liver dysfunction in HFD-induced NAFLD mice. Mechanistically, our data indicated that FA and p-CA bind to histone deacetylase 1 (HDAC1) to inhibit its expression. The results showed that peroxisome proliferator activated receptor gamma (PPARG), which is positively related to HDAC1, was inhibited by FA/p-CA, and further suppressed fatty acid binding protein (FABP) and fatty acid translocase (CD36). It suggests that FA/p-CA ameliorate NAFLD by inhibiting free fatty acid uptake via the HDAC1/PPARG axis, which may provide potential dietary supplements and drugs for prevention of NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Antígenos CD36/metabolismo , Dieta Alta en Grasa , Ácidos Grasos no Esterificados/metabolismo , Histona Desacetilasa 1/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Polifenoles/uso terapéutico , PPAR gamma/metabolismo
10.
Chemosphere ; 307(Pt 2): 135900, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35944668

RESUMEN

Iron oxides play an important role in the transport and transformation of organic phosphorus in aquatic environments. However, the effect of different types of iron oxide on the environmental fate of organic phosphorus has remained unclear. In this study, the photodegradation of the organic phosphorus compound adenosine triphosphate (ATP) via the activity of crystalline (goethite) and amorphous (ferrihydrite) iron oxides was investigated. It was found that ATP was photodegraded by goethite, resulting in the release of dissolved inorganic phosphate under simulated sunlight irradiation. The concentration of ATP on goethite decreased by 75% after 6 h of simulated sunlight irradiation, while the concentration of ATP on ferrihydrite decreased by only 22%. ATR-FTIR spectroscopy revealed that the intensity of the peaks for the P-O and PO stretching vibrations in the goethite-ATP complex decreased significantly more after simulated sunlight irradiation than did those for the ferrihydrite treatment. Combined with the higher TOC/TOC0 values for the goethite treatment, the results indicate that a more vigorous photochemical reaction took place in the presence of goethite than with ferrihydrite. Reactive oxygen species analysis also showed that hydroxyl and superoxide anion radicals were generated when goethite was exposed to simulated sunlight irradiation, while ferrihydrite did not exhibit this ability. Overall, this study highlights that the type of iron oxide is an important factor in the transformation of organic phosphorus in aquatic environments.


Asunto(s)
Compuestos de Hierro , Fósforo , Adenosina Trifosfato , Compuestos Férricos/química , Hierro/química , Compuestos de Hierro/química , Minerales/química , Oxidación-Reducción , Fosfatos/química , Fósforo/química , Especies Reactivas de Oxígeno , Superóxidos , Agua
11.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34117124

RESUMEN

Environmental fluctuations are a common challenge for single-celled organisms; enteric bacteria such as Escherichia coli experience dramatic changes in nutrient availability, pH, and temperature during their journey into and out of the host. While the effects of altered nutrient availability on gene expression and protein synthesis are well known, their impacts on cytoplasmic dynamics and cell morphology have been largely overlooked. Here, we discover that depletion of utilizable nutrients results in shrinkage of E. coli's inner membrane from the cell wall. Shrinkage was accompanied by an ∼17% reduction in cytoplasmic volume and a concurrent increase in periplasmic volume. Inner membrane retraction after sudden starvation occurred almost exclusively at the new cell pole. This phenomenon was distinct from turgor-mediated plasmolysis and independent of new transcription, translation, or canonical starvation-sensing pathways. Cytoplasmic dry-mass density increased during shrinkage, suggesting that it is driven primarily by loss of water. Shrinkage was reversible: upon a shift to nutrient-rich medium, expansion started almost immediately at a rate dependent on carbon source quality. A robust entry into and recovery from shrinkage required the Tol-Pal system, highlighting the importance of envelope coupling during shrinkage and recovery. Klebsiella pneumoniae also exhibited shrinkage when shifted to carbon-free conditions, suggesting a conserved phenomenon. These findings demonstrate that even when Gram-negative bacterial growth is arrested, cell morphology and physiology are still dynamic.


Asunto(s)
Citoplasma/fisiología , Escherichia coli/fisiología , Carbono/deficiencia , Carbono/farmacología , Citoplasma/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Nitrógeno/análisis , Fósforo/análisis
12.
Phytomedicine ; 77: 153274, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32771537

RESUMEN

BACKGROUND: Astragali Radix (AR), a common Traditional Chinese Medicine (TCM), is commonly used for treating nephrotic syndrome (NS) in China. At present, the research on the efficacy of AR against NS is relative clearly, but there are fewer researches on the mechanism. PURPOSE: The aim of this study was to evaluate the potential beneficial effects of AR in an adriamycin-induced nephropathy rat model, as well as investigate the possible mechanisms of action and potential lipid biomarkers. METHODS: In this work, a rat model of NS was established by two injections of ADR (3.5 + 1 mg/kg) into the tail vein. The potential metabolites and targets involved in the anti-NS effects of AR were predicted by lipidomics coupled with the network pharmacology approach, and the crucial metabolite and protein were further validated by western blotting and ELISA. RESULTS: The results showed that 22 metabolites such as l-carnitine, LysoPC (20:3), and SM (d18:1/16:0) were associated with renal injury. Moreover, SMPD1, CPT1A and LCAT were predicted as lipids linked targets of AR against NS, whilst glycerophospholipid, sphingolipid and fatty acids metabolism were involved as key pathways of AR against NS. Besides, AR could play a critical role in NS by improving oxidative stress, inhibiting apoptosis and reducing inflammation. Interestingly, our results indicated that key metabolite l-carnitine and target CPT1 were one of the important metabolites and targets for AR to exert anti-NS effects. CONCLUSION: In summary, this study offered a new understanding of the protection mechanism of AR against NS by network pharmacology and lipidomic method.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Síndrome Nefrótico/tratamiento farmacológico , Animales , Astragalus propinquus , Carnitina/metabolismo , Modelos Animales de Enfermedad , Doxorrubicina/toxicidad , Ácidos Grasos/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Lipidómica , Lisofosfatidilcolinas/metabolismo , Masculino , Síndrome Nefrótico/inducido químicamente , Síndrome Nefrótico/metabolismo , Ratas Sprague-Dawley
13.
Chem Biol Interact ; 325: 109096, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32289291

RESUMEN

BACKGROUND AND AIMS: Adriamycin nephropathy model (AN), a rodent model of nephrotic syndrome disease that was caused by the nephrotoxicity of adriamycin, has been widely used for pharmacodynamic evaluation of traditional Chinese medicine (TCM) in the treatment of kidney injury. Although some studies have clearly shown the pathological process of AN, the mechanism of kidney injury have not been systematically investigated. METHODS: The reliability of AN was evaluated by weight, urinary protein quantitation, serum biochemical and histopathological examination. Transcriptomic sequencing combined with network pharmacology were used to elucidate the molecular mechanism of AN, and cell experiment combined with real-time quantitative PCR (RT-qPCR) and was used to validate the accuracy of transcriptomic sequencing result and KEGG pathways. RESULTS: Network analysis result showed that Mapk10 and Ptgs2 played important roles in the development of adriamycin-induced kidney injury. KEGG pathway analysis showed that the mechanism of kidney injury may be related to the regulation of biosynthesis of unsaturated fatty acids, complement and coagulation cascades, PPAR signaling pathway and PI3K-AKT signaling pathway. CONCLUSION: These results provide a new insight into the deep research on the mechanism of kidney injury, and provide an experimental basis for finding drug targets for the treatment of AN.


Asunto(s)
Doxorrubicina/farmacología , Riñón/efectos de los fármacos , Riñón/lesiones , Mapeo de Interacción de Proteínas , Transcriptoma/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
14.
J Ethnopharmacol ; 258: 112537, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-31901455

RESUMEN

PURPOSE: This paper aimed to study the active compounds of Astragali Radix (AR) in the treatment of adriamycin nephropathy (AN) by a combination of network pharmacology and transcriptomics. METHODS: The chemical compounds of AR were screened out by text mining and database searching. Pharm Mapper was used to predict the targets of these chemical compounds. Potential targets of AN were screened by integrating the data from network pharmacology with known transcriptomics analysis results of kidney tissue. Compound-active target-potential target interactions networks were constructed so as to illustrate the relationship between compounds and targets, and obtain the chemical compounds directly related to potential targets of AN. The formula of compound contribution index (CI) based on algorithm was used to screen the active compounds of AR in the treatment of AN. In addition, we established an adriamycin-induced cell damage model with MPC5 cell, and used MTT assay, trypan blue dyeing and western blot analyses to validate the pharmacodynamic effect of the active compounds. RESULTS: 27 chemical compounds and 376 targets in AR were obtained by network pharmacology. Through Compound-active target-potential target interactions networks analysis, 22 compounds and 9 active targets as well as 130 potential targets were linked through 282 edges. The CI of every chemical compounds was further calculated by formula, the first four chemical compounds, including astragaloside IV, formononetin, quercetin and calycosin, whose cumulative contribution rate reached 87.28%, were considered to be active compounds. The results of MTT and trypan blue staining indicate that four active compounds had the significant protective effect on adriamycin-induced cell damage with MPC5 cell. Western blot result showed that four active compounds could significantly increase the expression of podocin protein in MPC5 cell. CONCLUSION: The active compounds of AR in the treatment of AN were successfully identified by using a network pharmacology and transcriptomics approach. This approach is expected to be beneficial to the study of the pharmacodynamic material basis of traditional Chinese medicine (TCM) in treating specific diseases.


Asunto(s)
Doxorrubicina/toxicidad , Medicamentos Herbarios Chinos/farmacología , Enfermedades Renales/tratamiento farmacológico , Animales , Astragalus propinquus , Línea Celular , Medicamentos Herbarios Chinos/química , Enfermedades Renales/inducido químicamente , Medicina Tradicional China , Ratones , Podocitos/efectos de los fármacos , Transcriptoma
15.
J Physiol Sci ; 69(5): 779-790, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31286450

RESUMEN

Intermittent hyperbaric oxygen exposure (IE-HBO) can protect the body against oxygen toxicity, but the underlying mechanisms are not very clear. Peroxiredoxin 6 (Prdx6) is a special endogenous antioxidative protein. We explored if the protective effects of IE-HBO are related to Prdx6. Mice were exposed to 280 kPa O2 for 60 min, followed by 30-min exposure to 20% O2/N2 mixture with equal pressure, repeated for six cycles. The Prdx6 protein level and non-selenium glutathione peroxidase (NSGPx) activity in the brain and lungs were then measured and the injury degree of lung and the oxidation level of brain and lung were evaluated. On this basis, the relationship between Prdx6 and IE-HBO's protection was explored. Generally, both IE-HBO and continuous exposure to HBO (CE-HBO) could increase the protein and mRNA levels of Prdx6, and such increases were more significant 24 h after cessation of exposure; moreover, the Prdx6 level of IE-HBO was higher than that of CE-HBO in both brain and lung, also more significantly 24 h after cessation of exposure. In addition, IE-HBO exposure could more effectively potentiate the activity of NSGPx and increase GSH content in brain and lung tissues. At the same time, it could reduce oxidation products in these tissues. IE-HBO could also provide protection for the lungs against injuries resulting from prolonged HBO exposure. These data showed that IE-HBO can potentiate the production and the activity of Prdx6 and consequently mitigate oxidative damages in brain and lungs. The influences of IE-HBO on Prdx6 may form an important basis for its protection against oxygen toxicity.


Asunto(s)
Oxígeno/efectos adversos , Oxígeno/metabolismo , Peroxiredoxina VI/metabolismo , Animales , Antioxidantes/metabolismo , Encéfalo/metabolismo , Glutatión Peroxidasa/metabolismo , Oxigenoterapia Hiperbárica/métodos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/fisiología , ARN Mensajero/metabolismo
16.
Prostate ; 79(6): 647-656, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30714183

RESUMEN

BACKGROUND: Paclitaxel (PTX) is a first-line chemotherapeutic drug for the treatment of prostate cancer. However, most patients develop resistance and metastasis, and thus new therapeutic approaches are urgently required. Recent studies have identified widespread anti-tumor effects of zinc (Zn) in various tumor cell lines, especially prostate cancer cells. In this study, we examined the effects of Zn as an adjuvant to PTX in prostate cancer cells. METHODS: PC3 and DU145 cells were treated with different concentrations of Zn and/or PTX. MTT assay was used to detect cell viability. Real-time cell analysis (RTCA) and microscopy were used to observe morphological changes in cells. Western blotting was used to detect the expression of epithelial-mesenchymal transition (EMT)-related proteins. qPCR (reverse transcription-polymerase chain reaction) was used to examine changes in TWIST1 mRNA levels. Cell invasion and migration were detected by scratch and transwell assays. shRNA against TWIST1 was used to knockdown TWIST1. Colony formation assay was used to detect cell proliferation, while Annexin V and propidium iodide (PI) staining was used to detect cell apoptosis. RESULTS: Zn and PTX increased proliferation inhibition in a dose- and time-dependent manner in prostate cancer cells, while Zn increased prostate cancer cell chemosensitivity to PTX. Combined Zn and PTX inhibited prostate cancer cell invasion and migration by downregulating the expression of TWIST1. Furthermore, knockdown of TWIST1 increased the sensitivity of prostate cancer cells to PTX. In addition, Zn and PTX reduced cell proliferation and induced apoptosis in prostate cancer cells. CONCLUSIONS: Our results demonstrated that Zn and PTX combined therapy inhibits EMT by reducing the expression of TWIST1, which reduces the invasion and migration of prostate cancer cells. SiTWIST1 increased the sensitivity of prostate cancer cells to PTX. In addition, with prolonged treatment, Zn and PTX inhibited proliferation and led to prostate cancer cell apoptosis. Therefore, Zn may be a potential adjuvant of PTX in treating prostate cancer and combined treatment may offer a promising therapeutic strategy for prostate cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Paclitaxel/farmacología , Próstata , Neoplasias de la Próstata , Zinc , Adyuvantes Farmacéuticos/metabolismo , Adyuvantes Farmacéuticos/farmacología , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Proteínas Nucleares/metabolismo , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Proteína 1 Relacionada con Twist/metabolismo , Zinc/metabolismo , Zinc/farmacología
17.
J Agric Food Chem ; 67(9): 2510-2518, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30741544

RESUMEN

Green tea accounts for approximately 20% of the world's total tea yield. (-)-Epigallocatechin gallate (EGCG) is an active catechin in green tea, which suppresses tumor growth and enhances drug sensitivity in various cancers, but the molecular mechanism is still unclear. Chemotherapy drugs, such as 5-fluorouracil (5-FU), are a common strategy for clinical treatment of cancer patients; however, the lower response rate caused by prolonged use becomes the main reason for tumor recurrence. Therefore, discovering a safe and effective chemo-sensitizer is an urgent task required to be solved. Here, we report that EGCG reinforces the sensitivity of colon cancer cells to 5-FU, and the IC50 values of 5-FU is decreased from 40 ± 4.2 µM to 5 ± 0.36 µM in one human colon carcinoma cell line-HCT-116, and from 150 ± 6.4 µM to 11 ± 0.96 µM in the other human colon carcinoma cell line-DLD1 when these cells are cotreated with 50 µM EGCG. Consistently, compared to 5-FU or EGCG treatment alone, the combination of both significantly promotes cancer cell apoptosis and DNA damage. Further mechanism research reveals that treatment of colorectal cancer (CRC) with 50 µM EGCG inhibits GRP78 expression, activates the NF-κB (2.55 ± 0.05-fold for HCT-116 and 2.27 ± 0.08-fold for DLD1) pathway, and enhances miR-155-5p (2.12 ± 0.02-fold for HCT-116 and 2.01 ± 0.01-fold for DLD1) level. The elevated miR-155-5p strongly suppresses target gene MDR1 expression, which blocks the efflux of 5-FU. The accumulation of 5-FU resulted in caspase-3 and PARP activation, Bcl-2 reduction, and Bad increase, which ultimately lead to cancer cell apoptosis. Overall, our data show that EGCG may be act as a novel chemo-sensitizer, and the GRP78/NF-κB/miR-155-5p/MDR1 pathway plays a vital role in EGCG enhancing the sensitivity of colorectal cancer to 5-FU.


Asunto(s)
Catequina/análogos & derivados , Neoplasias Colorrectales/tratamiento farmacológico , Fluorouracilo/uso terapéutico , Transducción de Señal/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Apoptosis/efectos de los fármacos , Catequina/farmacología , Neoplasias Colorrectales/patología , Daño del ADN/efectos de los fármacos , Interacciones Farmacológicas , Resistencia a Antineoplásicos/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Expresión Génica/efectos de los fármacos , Células HCT116 , Proteínas de Choque Térmico/efectos de los fármacos , Proteínas de Choque Térmico/genética , Humanos , MicroARNs/efectos de los fármacos , FN-kappa B/efectos de los fármacos
18.
Naunyn Schmiedebergs Arch Pharmacol ; 392(4): 467-480, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30560355

RESUMEN

Glucose-regulated protein 78 (GRP78) often highly expresses in a wide range of tumors, which plays promotive functions due to its diversity of location in the development of tumor. Particularly, GRP78 can be secreted into microenvironment by tumor cells through the pathway of exosome, which promotes proliferation, angiogenesis, and drug resistance in cancer cells. Hence, we discovered a potential inhibitor to block GRP78 secretion. We screened five small molecules that may interact with the GRP78 from 51 traditional Chinese medicine molecules by molecular docking. By using western blot, we found that one of the molecules can inhibit the secretion of GRP78, which is salvianolic acid A (SAA). Further, SAA could interact with the lysine residue 633 (K633) of GRP78, which inhibited GRP78 secretion. Moreover, SAA-GRP78 interaction can facilitate GRP78 of cytosol sorted into lysosome for degradation rather than exosome. In conclusion, our research revealed that SAA has the novel function of anti-angiogenesis via the tumor environment.


Asunto(s)
Inhibidores de la Angiogénesis/uso terapéutico , Ácidos Cafeicos/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Proteínas de Choque Térmico/metabolismo , Lactatos/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Animales , Ácidos Cafeicos/farmacología , Línea Celular , Colon/irrigación sanguínea , Colon/efectos de los fármacos , Colon/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Chaperón BiP del Retículo Endoplásmico , Femenino , Humanos , Lactatos/farmacología , Ratones Desnudos , Simulación del Acoplamiento Molecular
19.
Plant Physiol ; 174(3): 1779-1794, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28515146

RESUMEN

Early reproductive development in cereals is crucial for final grain number per spike and hence the yield potential of the crop. To date, however, no systematic analyses of gene expression profiles during this important process have been conducted for common wheat (Triticum aestivum). Here, we studied the transcriptome profiles at four stages of early wheat reproductive development, from spikelet initiation to floral organ differentiation. K-means clustering and stage-specific transcript identification detected dynamically expressed homeologs of important transcription regulators in spikelet and floral meristems that may be involved in spikelet initiation, floret meristem specification, and floral organ patterning, as inferred from their homologs in model plants. Small RNA transcriptome sequencing discovered key microRNAs that were differentially expressed during wheat inflorescence development alongside their target genes, suggesting that miRNA-mediated regulatory mechanisms for floral development may be conserved in cereals and Arabidopsis. Our analysis was further substantiated by the functional characterization of the ARGONAUTE1d (AGO1d) gene, which was initially expressed in stamen primordia and later in the tapetum during anther maturation. In agreement with its stage-specific expression pattern, the loss of function of the predominantly expressed B homeolog of AGO1d in a tetraploid durum wheat mutant resulted in smaller anthers with more infertile pollens than the wild type and a reduced grain number per spike. Together, our work provides a first glimpse of the gene regulatory networks in wheat inflorescence development that may be pivotal for floral and grain development, highlighting potential targets for genetic manipulation to improve future wheat yields.


Asunto(s)
Tipificación del Cuerpo/genética , Flores/genética , Perfilación de la Expresión Génica , Genes de Plantas , Genes Reguladores , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Triticum/genética , Secuencia de Bases , Análisis por Conglomerados , Fertilidad/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Organogénesis/genética , Polen/genética , Polen/crecimiento & desarrollo , Análisis de Secuencia de ARN , Tetraploidía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA