Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 312: 116457, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37088235

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Panax notoginseng (Burk.) F. H. Chen belongs to the Araliaceae family. It has been used by traditional Chinese people in Northeast Asia for centuries as an antidiabetic, antioxidant, antitumor agent, etc. Endophytic or rhizospheric microorganisms play key roles in plant defense mechanisms, and they are essential in the discovery of pharmaceuticals and valuable new secondary metabolites. In particular, endophytic or rhizospheric microorganisms of traditional medicinal plants. AIM OF THE STUDY: To discover valuable new secondary metabolites from rhizosphere soil Streptomyces sp. SYP-A7185 of P. notoginseng, and to explore potential bioactivities and targets of metabolites protrusive function. MATERIALS AND METHODS: The metabolites were obtained via column chromatography and identified by multiple spectroscopic analyses. The antitumor, antioxidant, antibacterial, and antiglycosidases effects of isolated metabolites were tested using 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetazolium bromide (MTT), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 96-well turbidimetric, and α-glucosidase inhibitory assays. The potential antitumor targets were predicted through network pharmacological approaches. The interactions between metabolites and target were verified by molecular docking and biolayer interferometry (BLI) assay. The effects of cancer cells migration were detected through wound healing assays in A549 and MCF-7. Other cellular validation experiments including reverse transcription-quantitative PCR (RT‒qPCR) and western blotting (WB) were used to confirm the hypothesis of network pharmacology. RESULTS: Five different chemotypes of anthraquinone derivatives (1-10), including six new compounds (3, 6-10), were identified from Streptomyces sp. SYP-A7185. Compounds 1-6 and 9 displayed moderate to strong cytotoxicity on five human cancer cell lines (A549, HepG2, MCF-7, MDA-MD-231, and MGC-803). Moreover, matrix metalloproteinase-2 (MMP2) were predicted as a potential antitumor target of metabolites 1-6 and 9 by comprehensive network pharmacology analysis. Later, BLI assays revealed strong intermolecular interactions between MMP2 and antitumor metabolites, and molecular docking results showed the interaction of metabolites 1-6 and 9 with MMP2 was dependent on the crucial amino acid residues of LEU-83, ALA-84, LEU-117, HIS-131, PRO-135, GLY-136, ALA-140, PRO-141, TYR-143, and THR-144. These results implied that metabolites (1-6 and 9) might inhibit cancer cell migration besides cancer cell proliferation. After that, the cell wound healing assay showed that the cell migration processes were also inhibited after the treatments of compounds 1 and 3 in A549 and MCF-7 cells. In addition, the RT‒qPCR and WB results demonstrated that the gene expression levels of MMP2 were decreased after the treatment with compounds 1 and 3 in A549 and MCF-7 cells. Besides, compound 2 displayed moderate antioxidant activity (EC50, 27.43 µM), compounds 3 and 6 exhibited moderate antibacterial activity, and compound 3 inhibited α-glucosidase with an IC50 value of 13.10 µM. CONCLUSIONS: Anthraquinone metabolites, from rhizosphere soil Streptomyces sp. of P. notoginseng, possess antitumor, antioxidant, antibacterial, and antiglycosidase activities. Moreover, metabolites 1 and 3 inhibit cancer cells migration through downregulating MMP2.


Asunto(s)
Neoplasias , Panax notoginseng , Streptomyces , Humanos , Panax notoginseng/química , Suelo/química , Metaloproteinasa 2 de la Matriz , Streptomyces/química , Rizosfera , Antioxidantes/farmacología , Simulación del Acoplamiento Molecular , alfa-Glucosidasas , Células MCF-7 , Movimiento Celular , Antraquinonas/farmacología , Antibacterianos , Neoplasias/tratamiento farmacológico
2.
Fitoterapia ; 131: 35-43, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30291967

RESUMEN

A total of 180 fungal isolates, belonging to 20 genera and 47 species, were obtained from the roots, stems and leaves of Panax notoginseng. One isolate, the endophytic fungus Penicillium janthinellum SYPF 7899, displayed the strongest antibacterial activity and was studied for its production of secondary metabolites. In total, three new compounds, including rotational isomers 1a, 1b and 2 were isolated from the solid cultures of P. janthinellum, as well as eight known compounds (3-10). These structures were determined on the basis of 1D, 2D NMR and electronic circular dichroism (ECD) spectroscopic analyses as well as theoretical calculations. Compound 1 exhibited significant inhibitory activities against Bacillus subtilis and Staphylococcus aureus with MIC values of 15 and 18 µg/ml, respectively. The other compounds showed moderate or weak activities. In addition, morphological observation showed the rod-shaped cells of B. subtilis growing into long filaments, which reached 1.5- to 2-fold of the length of the original cells after treatment with compound 1. The coccoid cells of S. aureus exhibited a similar response and swelled to a 2-fold volume after treatment with compound 1. In silico molecular docking was explored to study the binding interactions between the compounds and the active sites of filamentous temperature-sensitive protein Z (FtsZ) from B. subtilis and S. aureus. Compound 1a, 1b and 2 showed high binding energies, strong H-bond interactions and hydrophobic interactions with FtsZ. Based on the antimicrobial activities, cellular phenotype observation and docking studies, compound 1 is considered to be a promising antimicrobial inhibitor of FtsZ.


Asunto(s)
Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas del Citoesqueleto/antagonistas & inhibidores , Panax notoginseng/microbiología , Penicillium/química , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , China , Endófitos/química , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Staphylococcus aureus/efectos de los fármacos
3.
Nat Prod Bioprospect ; 8(5): 391-396, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29915912

RESUMEN

Panax notoginseng (Araliaceae) is a famous traditional Chinese medicine mainly cultivated in Yunnan and Guangxi provinces of China. Two new alkaloids, rigidiusculamide E (1) and [-(α-oxyisohexanoyl-N-methyl-leucyl)2-] (2), together with two known ones, (-)-oxysporidinone (3) and (-)-4,6'-anhydrooxysporidinone (4) were isolated from the mycelia culture of Fusarium tricinctum SYPF 7082, an endophytic fungus obtained from the healthy root of P. notoginseng. Their structures were determined on the basis of extensive spectroscopic analyses. Compounds 1-4 were tested for their inhibitory effects against NO production on Murine macrophage cell line, and the new compound 2 showed significant inhibitory activity on NO production with the IC50 value of 18.10 ± 0.16 µM.

4.
Fitoterapia ; 128: 265-271, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29864480

RESUMEN

A total of 58 fungal isolates, belonging to 24 genera, were obtained from the leaves, stems and roots of Ginkgo biloba L.. Among them, one endophytic fungal strain, Penicillium cataractum SYPF 7131, displayed the strongest antibacterial activity. Four new compounds (1-4) were isolated from the strain fermentation broth together with four known compounds (5-8). These structures were determined on the basis of 1D and 2D NMR and [Rh2(OCOCF3)4]-induced electronic circular dichroism (ECD) spectroscopic analyses. All the isolated compounds were screened for their in vitro antimicrobial activities. Compound 3 and 4 showed moderate inhibitory activity against Staphylococcus aureus. Compound 7 exhibited significant inhibitory activity against S. aureus with MIC value of 10 µg/mL. Further, the in silico molecular docking studies of the active compounds was used to explore the binding interactions with the active site of filamentous temperature-sensitive protein Z (FtsZ) from Staphylococcus aureus. The docking results revealed that compounds 3, 4 and 7 showed high binding energies, strong H-bond interactions and hydrophobic interactions with FtsZ from S. aureus validating the observed antimicrobial activity. Based on antimicrobial activities and docking studies, compounds 3, 4 and 7 were identified as promising antimicrobial lead molecules.


Asunto(s)
Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas del Citoesqueleto/antagonistas & inhibidores , Ginkgo biloba/microbiología , Penicillium/química , Antibacterianos/farmacología , Endófitos/química , Endófitos/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Penicillium/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA