Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Acta Pharmacol Sin ; 44(6): 1122-1134, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36627343

RESUMEN

Aggregation of α-synuclein, a component of Lewy bodies (LBs) or Lewy neurites in Parkinson's disease (PD), is strongly linked with disease development, making it an attractive therapeutic target. Inhibiting aggregation can slow or prevent the neurodegenerative process. However, the bottleneck towards achieving this goal is the lack of such inhibitors. In the current study, we established a high-throughput screening platform to identify candidate compounds for preventing the aggregation of α-synuclein among the natural products in our in-house compound library. We found that a small molecule, 03A10, i.e., (+)-desdimethylpinoresinol, which is present in the fruits of Vernicia fordii (Euphorbiaceae), modulated aggregated α-synuclein, but not monomeric α-synuclein, to prevent further elongation of α-synuclein fibrils. In α-synuclein-overexpressing cell lines, 03A10 (10 µM) efficiently prevented α-synuclein aggregation and markedly ameliorated the cellular toxicity of α-synuclein fibril seeds. In the MPTP/probenecid (MPTP/p) mouse model, oral administration of 03A10 (0.3 mg· kg-1 ·d-1, 1 mg ·kg-1 ·d-1, for 35 days) significantly alleviated behavioral deficits, tyrosine hydroxylase (TH) neuron degeneration and p-α-synuclein aggregation in the substantia nigra (SN). As the Braak hypothesis postulates that the prevailing site of early PD pathology is the gastrointestinal tract, we inoculated α-synuclein preformed fibrils (PFFs) into the mouse colon. We demonstrated that α-synuclein PFF inoculation promoted α-synuclein pathology and neuroinflammation in the gut and brain; oral administration of 03A10 (5 mg· kg-1 ·d-1, for 4 months) significantly attenuated olfactory deficits, α-synuclein accumulation and neuroinflammation in the olfactory bulb and SN. We conclude that 03A10 might be a promising drug candidate for the treatment of PD. 03A10 might be a novel drug candidate for PD treatment, as it inhibits α-synuclein aggregation by modulating aggregated α-synuclein rather than monomeric α-synuclein to prevent further elongation of α-synuclein fibrils and prevent α-synuclein toxicity in vitro, in an MPTP/p mouse model, and PFF-inoculated mice.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Enfermedades Neuroinflamatorias , Sustancia Negra/metabolismo , Sustancia Negra/patología , Encéfalo/metabolismo
2.
Acta Pharmacol Sin ; 43(2): 470-482, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33850276

RESUMEN

Aerobic glycolysis, also known as the Warburg effect, is a hallmark of cancer cell glucose metabolism and plays a crucial role in the activation of various types of immune cells. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of D-glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate in the 6th critical step in glycolysis. GAPDH exerts metabolic flux control during aerobic glycolysis and therefore is an attractive therapeutic target for cancer and autoimmune diseases. Recently, GAPDH inhibitors were reported to function through common suicide inactivation by covalent binding to the cysteine catalytic residue of GAPDH. Herein, by developing a high-throughput enzymatic screening assay, we discovered that the natural product 1,2,3,4,6-penta-O-galloyl-ß-D-glucopyranose (PGG) is an inhibitor of GAPDH with Ki = 0.5 µM. PGG blocks GAPDH activity by a reversible and NAD+ and Pi competitive mechanism, suggesting that it represents a novel class of GAPDH inhibitors. In-depth hydrogen deuterium exchange mass spectrometry (HDX-MS) analysis revealed that PGG binds to a region that disrupts NAD+ and inorganic phosphate binding, resulting in a distal conformational change at the GAPDH tetramer interface. In addition, structural modeling analysis indicated that PGG probably reversibly binds to the center pocket of GAPDH. Moreover, PGG inhibits LPS-stimulated macrophage activation by specific downregulation of GAPDH-dependent glucose consumption and lactate production. In summary, PGG represents a novel class of GAPDH inhibitors that probably reversibly binds to the center pocket of GAPDH. Our study sheds new light on factors for designing a more potent and specific inhibitor of GAPDH for future therapeutic applications.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Taninos Hidrolizables/farmacología , Animales , Evaluación Preclínica de Medicamentos/métodos , Glucosa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/antagonistas & inhibidores , Humanos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Compuestos Organometálicos , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
J Hematol Oncol ; 14(1): 153, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563230

RESUMEN

The 3-hydroxyanthranilic acid (3-HAA), a derivative of kynurenine, was reported to suppress tumor growth. However, the function of 3-HAA largely remains unclear. Here, we report that 3-hydroxyanthranilic acid (3-HAA) is lower in tumor cells, while adding exogenous 3-HAA induces apoptosis in hepatocellular carcinoma by binding YY1. This 3-HAA binding of YY1 leads to phosphorylation of YY1 at the Thr 398 by PKCζ, concomitantly enhances YY1 chromatin binding activity to increase expression of target genes. These findings demonstrate that 3-HAA is a ligand of YY1, suggesting it is a promising therapeutic candidate for HCC.


Asunto(s)
Ácido 3-Hidroxiantranílico/farmacología , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Quinurenina/análogos & derivados , Neoplasias Hepáticas/tratamiento farmacológico , Factor de Transcripción YY1/metabolismo , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Células Hep G2 , Humanos , Quinurenina/farmacología , Ligandos , Neoplasias Hepáticas/metabolismo
4.
Acta Pharmacol Sin ; 42(12): 2155-2172, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33931765

RESUMEN

LianhuaQingwen capsule, prepared from an herbal combination, is officially recommended as treatment for COVID-19 in China. Of the serial pharmacokinetic investigations we designed to facilitate identifying LianhuaQingwen compounds that are likely to be therapeutically important, the current investigation focused on the component Glycyrrhiza uralensis roots (Gancao). Besides its function in COVID-19 treatment, Gancao is able to induce pseudoaldosteronism by inhibiting renal 11ß-HSD2. Systemic and colon-luminal exposure to Gancao compounds were characterized in volunteers receiving LianhuaQingwen and by in vitro metabolism studies. Access of Gancao compounds to 11ß-HSD2 was characterized using human/rat, in vitro transport, and plasma protein binding studies, while 11ß-HSD2 inhibition was assessed using human kidney microsomes. LianhuaQingwen contained a total of 41 Gancao constituents (0.01-8.56 µmol/day). Although glycyrrhizin (1), licorice saponin G2 (2), and liquiritin/liquiritin apioside (21/22) were the major Gancao constituents in LianhuaQingwen, their poor intestinal absorption and access to colonic microbiota resulted in significant levels of their respective deglycosylated metabolites glycyrrhetic acid (8), 24-hydroxyglycyrrhetic acid (M2D; a new Gancao metabolite), and liquiritigenin (27) in human plasma and feces after dosing. These circulating metabolites were glucuronized/sulfated in the liver and then excreted into bile. Hepatic oxidation of 8 also yielded M2D. Circulating 8 and M2D, having good membrane permeability, could access (via passive tubular reabsorption) and inhibit renal 11ß-HSD2. Collectively, 1 and 2 were metabolically activated to the pseudoaldosterogenic compounds 8 and M2D. This investigation, together with such investigations of other components, has implications for precisely defining therapeutic benefit of LianhuaQingwen and conditions for its safe use.


Asunto(s)
Antivirales/farmacocinética , Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/farmacocinética , Fitoquímicos/farmacocinética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/antagonistas & inhibidores , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Administración Oral , Animales , Antivirales/administración & dosificación , Antivirales/efectos adversos , Disponibilidad Biológica , Biotransformación , Cápsulas , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/efectos adversos , Femenino , Glycyrrhiza/efectos adversos , Células HEK293 , Humanos , Síndrome de Liddle/inducido químicamente , Síndrome de Liddle/enzimología , Masculino , Seguridad del Paciente , Fitoquímicos/administración & dosificación , Fitoquímicos/efectos adversos , Ratas Sprague-Dawley , Medición de Riesgo
5.
Molecules ; 26(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499337

RESUMEN

During the past decades, solution nuclear magnetic resonance (NMR) spectroscopy has demonstrated itself as a promising tool in drug discovery. Especially, fragment-based drug discovery (FBDD) has benefited a lot from the NMR development. Multiple candidate compounds and FDA-approved drugs derived from FBDD have been developed with the assistance of NMR techniques. NMR has broad applications in different stages of the FBDD process, which includes fragment library construction, hit generation and validation, hit-to-lead optimization and working mechanism elucidation, etc. In this manuscript, we reviewed the current progresses of NMR applications in fragment-based drug discovery, which were illustrated by multiple reported cases. Moreover, the NMR applications in protein-protein interaction (PPI) modulators development and the progress of in-cell NMR for drug discovery were also briefly summarized.


Asunto(s)
Descubrimiento de Drogas/métodos , Espectroscopía de Resonancia Magnética/métodos , Animales , Fenómenos Biofísicos , Células/efectos de los fármacos , Células/metabolismo , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Humanos , Ligandos , Mapas de Interacción de Proteínas , Bibliotecas de Moléculas Pequeñas
6.
Bioorg Chem ; 101: 103991, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32559581

RESUMEN

CREB-binding protein (CBP) is a large multi-domain protein containing a HAT domain catalyzing transacetylation and a bromodomain responsible for acetylated lysine recognition. CBPs could act as transcription co-activators to regulate gene expression and have been shown to play a significant role in the development and progression of many cancers. Herein, through in silico screening two hit compounds with tetrahydroquinolin methyl carbamate scaffold were discovered, among which DC-CPin7 showed an in vitro inhibitory activity with the TR-FRET IC50 value of 2.5 ± 0.3 µM. We obtained a high-resolution co-crystal structure of the CBP bromodomain in complex with DC-CPin7 to guide following structure-based rational drug design, which yielded over ten DC-CPin7 derivatives with much higher potency, among which DC-CPin711 showed approximately 40-fold potency compared with hit compound DC-CPin7 with an in vitro TR-FRET IC50 value of 63.3 ± 4.0 nM. Notably, DC-CPin711 showed over 150-fold selectivity against BRD4 bromodomains. Moreover, DC-CPin711 showed micromolar level of anti-leukemia proliferation through G1 phase cell cycle arrest and cell apoptosis. In summary, through a combination of computational and crystal-based structure optimization, DC-CPin711 showed potent in vitro inhibitory activities to CBP bromodomain with a decent selectivity towards BRD4 bromodomains and good cellular activity to leukemia cells, which could further be applied to related biological and translational studies as well as serve as a lead compound for future development of potent and selective CBP bromodomain inhibitors.


Asunto(s)
Proteína de Unión a CREB/antagonistas & inhibidores , Dominios Proteicos/efectos de los fármacos , Quinolinas/química , Quinolinas/farmacología , Proteína de Unión a CREB/química , Cristalografía por Rayos X , Diseño de Fármacos , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Humanos , Leucemia/patología , Quinolinas/síntesis química , Relación Estructura-Actividad
7.
Bioorg Chem ; 86: 494-500, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30780018

RESUMEN

Bromodomain PHD finger transcription factor (BPTF), a bromodomain-containing protein, plays a crucial role in the regulation of downstream gene expression through the specific recognition of lysine acetylation on bulk histones. The dysfunction of BPTF is closely involved with the development and progression of many human diseases, especially cancer. Therefore, BPTF bromodomain has become a promising drug target for epigenetic cancer therapy. However, unlike BET family inhibitors, few BPTF bromodomain inhibitors have been reported. In this study, by integrating docking-based virtual screening with biochemical analysis, we identified a novel selective BPTF bromodomain inhibitor DCB29 with the IC50 value of 13.2 ±â€¯1.6 µM by homogenous time-resolved fluorescence resonance energy transfer (HTRF) assays. The binding between DCB29 and BPTF was confirmed by NMR and SPR. Molecular docking disclosed that DCB29 occupied the pocket of acetylated H4 peptide substrate and provided detailed SAR explanations for its derivatives. Collectively, DCB29 presented great potential as a powerful tool for BPTF-related biological research and further medicinal chemistry optimization.


Asunto(s)
Alcoholes/farmacología , Benzamidas/farmacología , Descubrimiento de Drogas , Factores de Transcripción/antagonistas & inhibidores , Alcoholes/síntesis química , Alcoholes/química , Benzamidas/síntesis química , Benzamidas/química , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Transferencia Resonante de Energía de Fluorescencia , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Dominios Proteicos/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/aislamiento & purificación , Factores de Transcripción/metabolismo
8.
Haematologica ; 103(9): 1472-1483, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29880605

RESUMEN

Acute myeloid leukemia is a disorder characterized by abnormal differentiation of myeloid cells and a clonal proliferation derived from primitive hematopoietic stem cells. Interventions that overcome myeloid differentiation have been shown to be a promising therapeutic strategy for acute myeloid leukemia. In this study, we demonstrate that CRISPR/Cas9-mediated knockout of dihydroorotate dehydrogenase leads to apoptosis and normal differentiation of acute myeloid leukemia cells, indicating that dihydroorotate dehydrogenase is a potential differentiation regulator and a therapeutic target in acute myeloid leukemia. By screening a library of natural products, we identified a novel dihydroorotate dehydrogenase inhibitor, isobavachalcone, derived from the traditional Chinese medicine Psoralea corylifolia Using enzymatic analysis, thermal shift assay, pull down, nuclear magnetic resonance, and isothermal titration calorimetry experiments, we demonstrate that isobavachalcone inhibits human dihydroorotate dehydrogenase directly, and triggers apoptosis and differentiation of acute myeloid leukemia cells. Oral administration of isobavachalcone suppresses subcutaneous HL60 xenograft tumor growth without obvious toxicity. Importantly, our results suggest that a combination of isobavachalcone and adriamycin prolonged survival in an intravenous HL60 leukemia model. In summary, this study demonstrates that isobavachalcone triggers apoptosis and differentiation of acute myeloid leukemia cells via pharmacological inhibition of human dihydroorotate dehydrogenase, offering a potential therapeutic strategy for acute myeloid leukemia.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Animales , Apoptosis/genética , Biomarcadores de Tumor , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chalconas/química , Chalconas/farmacología , Dihidroorotato Deshidrogenasa , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Activación Enzimática/efectos de los fármacos , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Ratones , Modelos Moleculares , Estructura Molecular , Células Madre Neoplásicas/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Pronóstico , Interferencia de ARN , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Eur J Med Chem ; 151: 740-751, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29665527

RESUMEN

The general control nonrepressed protein 5 (GCN5) plays a crucial role in many biological processes. Dysregulation of GCN5 has been closely related to various human diseases, especially cancers. Hence, the exploitation of small molecules targeting GCN5 is essential for drug design and academic research. Based on the amplified luminescent proximity homogeneous assay screen methodology, we performed high throughput screening and discovered a novel GCN5 inhibitor DC_G16 with 1,8-acridinedione scaffold. Structure optimization led to the identification of a highly potent inhibitor, namely DC_G16-11 with the half-maximal inhibitory concentration (IC50) value of 6.8 µM. The binding between DC_G16-11 and GCN5 was demonstrated by NMR and SPR with a KD of 4.2 µM. It could also inhibit proliferation and induce cell cycle arrest and apoptosis in cancer cells while it presented minimal effects on normal cells. Herein, DC_G16-11 could be applied as a validated chemical probe for GCN5-related biological function research and presented great potential for clinical disease treatment.


Asunto(s)
Acridinas/química , Acridinas/farmacología , Histona Acetiltransferasas/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Histona Acetiltransferasas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción p300-CBP/metabolismo
10.
Drug Metab Dispos ; 46(6): 823-834, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29523601

RESUMEN

XueBiJing, an injectable five-herb preparation, has been incorporated into routine sepsis care in China. Phthalides, originating from XueBiJing's component herbs Ligusticum chuanxiong rhizomes and Angelica sinensis roots, are believed to contribute to its therapeutic effects due to their presence in the preparation and antisepsis-related properties. This investigation aimed to identify potential therapeutic phthalides that are bioavailable to act on XueBiJing's therapeutic targets and that could serve as pharmacokinetic markers to supplement classic biomarkers for sepsis care. Among 10 phthalides detected in XueBiJing, senkyunolides I and G were the major circulating phthalides in human subjects, but their different pharmacokinetics might influence their contribution to XueBiJing's therapeutic action. Senkyunolide I exhibited a large distribution volume (1.32 l/kg) and was moderately bound in plasma (54% unbound), whereas senkyunolide G exhibited a small distribution volume (0.10 l/kg) and was extensively bound in plasma (3% unbound). Clearance of senkyunolide I from the systemic circulation was governed by UGT2B15-mediated hepatic glucuronidation; the resulting electrophilic glucuronides were conjugated with glutathione in the liver. Senkyunolide G was selectively bound to albumin (99%) in human plasma. To our knowledge, the human pharmacokinetic data of XueBiJing's phthalides are reported here for the first time. Based on this investigation and such investigations of the other component herbs, follow-up pharmacodynamic assessments of bioavailable herbal compounds are planned to elucidate XueBiJing's chemical basis responsible for its therapeutic action. Senkyunolides I and G, having the preceding disposition characteristics that could be detectably altered by septic pathophysiology, could serve as pharmacokinetic markers for sepsis care.


Asunto(s)
Benzofuranos/farmacología , Benzofuranos/farmacocinética , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/farmacocinética , Sepsis/tratamiento farmacológico , Adolescente , Adulto , Angelica sinensis , Animales , Femenino , Glucuronosiltransferasa/metabolismo , Humanos , Inyecciones/métodos , Masculino , Ratas , Ratas Sprague-Dawley , Sepsis/metabolismo , Adulto Joven
11.
J Chromatogr A ; 1491: 87-97, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28256254

RESUMEN

Targeted identification of potentially bioactive molecules from herbal medicines is often stymied by the insufficient chromatographic separation, ubiquitous matrix interference, and pervasive isomerism. An enhanced targeted identification strategy is presented and validated by the selective identification of flavonoid O-glycosides (FOGs) from Carthamus tinctorius. It consists of four steps: (i) enhanced separation and detection by offline two-dimensional liquid chromatography/LTQ-Orbitrap MS (offline 2D-LC/LTQ-Orbitrap MS) using collision-induced dissociation (CID) and high-energy C-trap dissociation (HCD); (ii) improved identification of the major aglycones by acid hydrolysis and LC-SPE-NMR; (iii) simplified spectral elucidation by high-resolution diagnostic product ions/neutral loss filtering; and (iv) more convincing structural identification by matching an in-house library. An offline 2D-LC system configuring an Acchrom XAmide column and a BEH Shield RP-18 UPLC® column enabled much better separation of the easily co-eluting components. Combined use of CID and HCD could produce complementary fragmentation information. The intensity ratios of the aglycone ion species ([Y0-H]-/Y0- and [Y0-2H]-/Y0-) in the HCD-MS2 spectra were found diagnostic for discriminating the aglycone subtypes and characterizing the glycosylation patterns. Five aglycone structures (kaempferol, 6-hydroxykaempferol, 6-methoxykaempferol, carthamidin, and isocarthamidin) were identified based on the 1H-NMR data recorded by LC-SPE-NMR. Of the 107 characterized flavonoids, 80 FOGs were first reported from C. tinctorius. Unknown aglycones, pentose, and novel acyl substituents were discovered. A new compound thereof was isolated and fully identified, which could partially validate the MS-oriented identification. This integral strategy can improve the potency, efficiency, and accuracy in the detection of new compounds from medicinal herbs and other natural sources.


Asunto(s)
Carthamus tinctorius/química , Cromatografía Liquida/métodos , Flavonoides , Glicósidos , Espectrometría de Masas/métodos , Flavonoides/análisis , Flavonoides/química , Flavonoides/aislamiento & purificación , Glicósidos/análisis , Glicósidos/química , Glicósidos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Extracción en Fase Sólida
12.
Artículo en Inglés | MEDLINE | ID: mdl-26442121

RESUMEN

In this study, the antifatigue effects of acupuncture had been investigated at the metabolic level on the young male athletes with exhaustive physical exercises. After a series of exhaustive physical exercises and a short-term rest, the athletes either were treated with needling acupuncture on selected acupoints (TA group) or enjoyed an extended rest (TR group). NMR-based metabolomics analysis was then applied to depict the metabolic profiles of urine samples, which were collected from the athletes at three time points including the time before exercises, the time before and after the treatment of acupuncture, or taking the extended rest. The results from multivariate statistical analysis indicated that the recoveries of disturbed metabolites in the athletes treated with acupuncture were significantly faster than in those only taking rest. After the treatment with acupuncture, the levels of distinguished metabolites, 2-hydroxybutyrate, 3-hydroxyisovalerate, lactate, pyruvate, citrate, dimethylglycine, choline, glycine, hippurate, and hypoxanthine were recovered at an accelerated speed in the TA group in comparison with the TR group. The above-mentioned results indicated that the acupuncture treatment ameliorated fatigue by backregulating the perturbed energy metabolism, choline metabolism, and attenuating the ROS-induced stress at an accelerated speed, which demonstrated that acupuncture could serve as an alternative fatigue-relieving approach.

13.
Acta Pharmacol Sin ; 35(5): 697-706, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24632844

RESUMEN

AIM: To test the hypothesis that the traditional Chinese medicine Cordyceps sinensis could improve the metabolic function of extrarenal organs to achieve its anti-chronic kidney disease (CKD) effects. METHODS: Male SD rats were divided into CKD rats (with 5/6-nephrectomy), CKD rats treated with Cordyceps sinensis (4 mg•kg-1•d-1, po), and sham-operated rats. After an 8-week treatment, metabolites were extracted from the hearts and livers of the rats, and then subjected to (1)H-NMR-based metabolomic analysis. RESULTS: Oxidative stress, energy metabolism, amino acid and protein metabolism and choline metabolism were considered as links between CKD and extrarenal organ dysfunction. Within the experimental period of 8 weeks, the metabolic disorders in the liver were more pronounced than in the heart, suggesting that CKD-related extrarenal organ dysfunctions occurred sequentially rather than simultaneously. Oral administration of Cordyceps sinensis exerted statistically significant rescue effects on the liver and heart by reversely regulating levels of those metabolites that are typically perturbed in CKD. CONCLUSION: Oral administration of Cordyceps sinensis significantly attenuates the liver and heart injuries in CKD rats. The (1)H NMR-based metabolomic approach has provided a systematic view for understanding of CKD and the drug treatment, which can also be used to elucidate the mechanisms of action of other traditional Chinese medicines.


Asunto(s)
Cordyceps/metabolismo , Lesiones Cardíacas/tratamiento farmacológico , Hepatopatías/tratamiento farmacológico , Metaboloma/efectos de los fármacos , Sustancias Protectoras/farmacología , Insuficiencia Renal Crónica/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Corazón , Lesiones Cardíacas/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hepatopatías/metabolismo , Masculino , Medicina Tradicional China/métodos , Metabolómica/métodos , Ratas , Insuficiencia Renal Crónica/metabolismo
14.
PLoS One ; 8(10): e78281, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24205180

RESUMEN

BACKGROUND: Herba Rhodiolae is a traditional Chinese medicine used by the Tibetan people for treating hypoxia related diseases such as anxiety. Based on the previous work, we developed and patented an anti-anxiety herbal formula Fu Fang Jin Jing Oral Liquid (FJJOL) with Herba Rhodiolae as a chief ingredient. In this study, the anti-hypoxia and anti-anxiety effects of FJJOL in a high altitude forced-swimming mouse model with anxiety symptoms will be elucidated by NMR-based metabolomics. METHODS: In our experiments, the mice were divided randomly into four groups as flatland group, high altitude saline-treated group, high altitude FJJOL-treated group, and high altitude diazepam-treated group. To cause anxiety effects and hypoxic defects, a combination use of oxygen level decreasing (hypobaric cabin) and oxygen consumption increasing (exhaustive swimming) were applied to mice. After a three-day experimental handling, aqueous metabolites of mouse brain tissues were extracted and then subjected to NMR analysis. The therapeutic effects of FJJOL on the hypobaric hypoxia mice with anxiety symptoms were verified. RESULTS: Upon hypoxic exposure, both energy metabolism defects and disorders of functional metabolites in brain tissues of mice were observed. PCA, PLS-DA and OPLS-DA scatter plots revealed a clear group clustering for metabolic profiles in the hypoxia versus normoxia samples. After a three-day treatment with FJJOL, significant rescue effects on energy metabolism were detected, and levels of ATP, fumarate, malate and lactate in brain tissues of hypoxic mice recovered. Meanwhile, FJJOL also up-regulated the neurotransmitter GABA, and the improvement of anxiety symptoms was highly related to this effect. CONCLUSIONS: FJJOL ameliorated hypobaric hypoxia effects by regulating energy metabolism, choline metabolism, and improving the symptoms of anxiety. The anti-anxiety therapeutic effects of FJJOL were comparable to the conventional anti-anxiety drug diazepam on the hypobaric hypoxia mice. FJJOL might serve as an alternative therapy for the hypoxia and anxiety disorders.


Asunto(s)
Ansiolíticos/farmacología , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Soluciones Farmacéuticas/farmacología , Preparaciones de Plantas/farmacología , Administración Oral , Animales , Metabolismo Energético/efectos de los fármacos , Medicina de Hierbas/métodos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Medicina Tradicional China/métodos , Metabolómica/métodos , Ratones , Oxígeno/metabolismo , Natación/fisiología
15.
Acta Pharmacol Sin ; 24(10): 1016-20, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14531945

RESUMEN

AIM: To examine the effect of BmTx3B, a novel short-chain peptide isolated from the venom of Asian scorpion Buthus martensi Karsch, on voltage-gated potassium channels. METHODS: Two types of voltage-dependent potassium currents were recorded from dissociated hippocampal neurons of neonatal rat in whole-cell voltage-clamp mode, and separated based upon their kinetic properties. RESULTS: BmTx3B (10-100 micromol/L) selectively inhibited the delayed rectifier potassium current (I(K)), without affecting the fast transient potassium current (I(A)). The inhibition of the peptide on I(K) was reversible, concentration-dependent and voltage-independent. BmTx3B did not affect the steady-state activation and inactivation kinetics of the current. CONCLUSION: The short-chain scorpion peptide BmTx3B selectively blocked the delayed rectifier potassium channel.


Asunto(s)
Hipocampo/fisiología , Materia Medica/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/efectos de los fármacos , Venenos de Escorpión/farmacología , Escorpiones , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Canales de Potasio de Tipo Rectificador Tardío , Hipocampo/citología , Materia Medica/aislamiento & purificación , Datos de Secuencia Molecular , Neuronas/fisiología , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/aislamiento & purificación , Ratas , Ratas Sprague-Dawley , Venenos de Escorpión/aislamiento & purificación , Escorpiones/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA