Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 257(Pt 2): 128669, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092124

RESUMEN

In recent years, plant polysaccharides have garnered attention for their impressive biological activity. Mulberry leaves have a long history of medicinal and edible use in China, polysaccharide is one of the main active components of mulberry leaves, mainly consist of xylose, arabinose, fructose, galactose, glucose and mannose, etc. The extraction methods of mulberry leaves polysaccharides (MLPs) mainly include hot water extraction, microwave-assisted extraction, ultrasonic extraction, enzyme-assisted extraction, and co-extraction. The separation and purification of MLPs involve core steps such as decolorization, protein removal, and chromatographic separation. In terms of pharmacological effects, MLPs exhibit excellent activity in reducing blood glucose, anti-oxidation, immune regulation, anti-tumor, antibacterial, anti-coagulation, and regulation of gut microbiota. Currently, there is a considerable amount of research on MLPs, however, there is a lack of systematic summarization. This review summarizes the research progress on the extraction, structural characterization, and pharmacological activities of MLPs, and points out existing shortcomings and suggests reference solutions, aiming to provide a basis for further research and development of MLPs.


Asunto(s)
Morus , Morus/química , Polisacáridos/química , Antioxidantes/química , Oxidación-Reducción , Extractos Vegetales/química , Hojas de la Planta/química
2.
J Hazard Mater ; 454: 131502, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37121040

RESUMEN

Black phosphorus (BP) shows encouraging utility in many fields, and metal doping has been suggested as an efficient way to improve stability. However, controversial results and inconsistent mechanisms have been reported for doping modulation and stability change. We observed the unforeseen evolution of singlet oxygen (1O2) from BP integrated with gold nanoparticles (BP@Au) under dark conditions, and this led to rapid BP deterioration, even though enhanced stability is commonly thought via surface doping. Briefly, the BP reacted with oxygen and water to yield superoxide (O2•-) and hydrogen peroxide. Au0 acted as an enzyme mimic and catalyzed the conversion of these derivatives, and Au0 was converted to a mixture of Au3+ and Au+. The O2•- was converted to 1O2 via direct donation of electrons to the Au3+/+. The Au-catalyzed redox reactions accelerated the degradation of the BP nanosheets. BP@Au showed significant toxicity toward marine alga that produce O2•- in the dark, as indicated by a more than 30% reduction in cell viability after 12 h of incubation with 7.56 mg/L BP@Au. The novelty of this work lies in the demonstration of a dopant-related degradation pathway of BP that shows unrevealed toxicity toward O2•--producing marine algae.


Asunto(s)
Nanopartículas del Metal , Oxígeno Singlete , Superóxidos , Oro/toxicidad , Fósforo , Nanopartículas del Metal/toxicidad , Oxígeno
3.
Sci Total Environ ; 721: 137740, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32163736

RESUMEN

Recently, two-dimensional black phosphorus (BP) nanomaterial has captured much attention due to its superb physiochemical and electronic properties and various promising biomedical applications. However, relatively few studies have explored its antimicrobial properties, particularly for targeting antibiotic-resistant pathogens. A comprehensive understanding of the bactericidal mechanisms of BP is essential for application of this material as an antimicrobial. This review discusses the physicochemical and electronic properties of BP that are relevant for antimicrobial applications, especially the unique characteristics that may play a role in overcoming drug resistance. The literature is discussed in the context of what is known and what information is missing. We also highlight the differences and advantages of BP over other two-dimensional nanomaterials (i.e., graphene oxide and molybdenum disulfide) for bactericidal activity. Finally, we analyze existing challenges and note topics that require future investigation to overcome current inadequacies, aiming to assist the safe development of BP-based nanotechnology for pathogen control.


Asunto(s)
Antibacterianos , Nanoestructuras , Bacterias , Nanotecnología , Fósforo
4.
J Anal Methods Chem ; 2019: 8320171, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31485369

RESUMEN

Rhizoma Alismatis (RA), widely known as "Ze-Xie" in China, is the tuber of Alisma orientale (Sam.) Juzep (Alismaceae), a Chinese herbal medicine that has been used to treat hyperlipidemia, diabetes, hypertension, dysuria, and inflammation. In this study, a sensitive and reliable method based on an ultra-performance liquid chromatography (UPLC) couple with two ionisation modes, including electrospray ionisation (ESI) and atmospheric pressure chemical ionisation (APCI) tandem mass spectrometry (MS), namely, UPLC-ESI/APCI-MS/MS was developed and validated to simultaneously determine 8 triterpenoids (ESI mode) and 2 sesquiterpenoids (APCI mode) in RA. Ten marker compounds were analysed with a Waters' CORTECS UPLC C18 column (200 mm × 2.1 m, 1.6 µm) and gradient elution with water (contained 0.1% formic) and acetonitrile within 7 min. The established method was validated for linearity, intra- and interday precisions, accuracy, recovery, and stability. The calibration curve for 10 marker compounds showed good linear regression (r > 0.9971). The limits of detection and quantification for analytes were 0.14-1.67 ng/mL and 0.44-5.65 ng/mL, respectively. The relative standard deviations (RSD, %) and accuracy (RE, %) of intra- and interday precisions were less than 3.83% and 1.21% and 3.22% and 1.46%, repeatability and stability for real samples were less than 2.78% and 3.19%, respectively. All recoveries of the 10 marker compounds ranged from 97.24% to 102.49% with RSDs less than 4.05%. The developed method efficiently determined the 10 marker compounds in RA and was subsequently applied to optimise harvest time and crude processing temperature. The result indicated the 90% wilted phase and 70°C (or lower) may be the best harvest time and the processing temperature of RA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA