Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Ther Med ; 27(4): 140, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38476915

RESUMEN

Urinary tract infections (UTIs) are prevalent and recurrent bacterial infections that affect individuals worldwide, posing a significant burden on healthcare systems. The present study aimed to explore the epidemiology of UTIs, investigating the seasonal, gender-specific and age-related bacterial pathogen distribution to guide clinical diagnosis. Data were retrospectively collected from electronic medical records and laboratory reports of 926 UTIs diagnosed in Fuding Hospital (Fujian University of Traditional Chinese Medicine, Fuding, China). Bacterial isolates were identified using standard microbiological techniques. χ2 tests were performed to assess associations between pathogens and the seasons, sex and age groups. Significant associations were found between bacterial species and seasons. Enterococcus faecium exhibited a substantial prevalence in spring (χ2, 12.824; P=0.005), while Acinetobacter baumannii demonstrated increased prevalence in autumn (χ2, 16.404; P=0.001). Female patients showed a higher incidence of UTIs. Gram-positive bacteria were more prevalent in males, with Staphylococcus aureus showing significant male predominance (χ2, 14.607; P<0.001). E. faecium displayed an age-related increase in prevalence (χ2, 17.775; P<0.001), whereas Escherichia coli tended to be more prevalent in younger patients (χ2, 12.813; P=0.005). These findings highlight the complex nature of UTIs and offer insights for tailored diagnostic and preventive strategies, potentially enhancing healthcare outcomes.

2.
Huan Jing Ke Xue ; 35(11): 4111-7, 2014 Nov.
Artículo en Chino | MEDLINE | ID: mdl-25639083

RESUMEN

The empirical coefficient of sewage disposal, export coefficient model and mean concentration method were respectively used to estimate variations of annual load TN and TP from Shenzhen and Hong Kong areas in the Deep Bay Watershed from 1986 to 2011. The results showed that, the annual average loads of TN and TP were 10 388.2 t, 10 727.9 t, 10 937.3 t, and 2 694.5 t, 1 929.2 t, 1388.7 t, respectively in the whole watershed during three periods, 80s, 90s and years after 2000. With the rapid development of society, economy and the urbanization, annual pollution loading of TN and TP in Shenzhen area showed an obviously increase, 4373.6 t and 195.9 t, by 261.0% and 64.2% for point source, and 1067.2 t and 151.0 t, by 63.4% and 84.9% for non-point source, respectively. Non-point source with high pollution load was mainly caused by the expanding of land for construction and roads. The contribution ratios of TN and TP from Shenzhen area increased from 42.4% and 27.0% to 85.1% and 75.2%. Annual loads of TN and TP in Hong Kong area decreased 3 028.5 t and 1 031.5 t, by 66.3% and 79.0% reduced.


Asunto(s)
Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Ríos/química , Contaminantes Químicos del Agua/análisis , Bahías , China , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA