Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bull Environ Contam Toxicol ; 109(1): 180-185, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35678829

RESUMEN

Bauxite residue is the bulk solid waste generated by the alumina industry, and the environmental treatment of bauxite residue has always been a focus of attention. In this study, in the high calcium system, the bauxite residue was intensively digestion by the calcification-carbonation method, and the mole ratio of solution, the mass ratio of CaO/SiO2 of the digestion process were changed, so that the high-efficiency dealkalization of bauxite residue was realized and the aluminum oxide in bauxite residue was deeply extracted. The experimental results showed that the calcification process could achieve the recovery of 17.83% alumina at 260°C, reaction duration of 60 min, liquid-solid ratio = 5:1, the mass ratio of CaO/SiO2 = 3.5, and 200 g/L NaOH solution. The whole process can recover 49.61% of alumina from bauxite residue, and 94.4% of alkali in bauxite residue can be removed.


Asunto(s)
Óxido de Aluminio , Dióxido de Silicio , Industrias
2.
J Environ Manage ; 317: 115359, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35623128

RESUMEN

Bauxite residue poses an increasingly serious ecological safety problem in the alumina industry. A novel process for removing sodium in bauxite residue synergistic preparation of potassium-containing compound fertilizer raw materials was proposed to relieve pressure on the fertilizer industry. In this paper, synthetic sodalite and katoite were used to simulate the main mineral phases of bauxite residue to determine the suitable conditions for the method, and the transformation mechanism of the process was researched by analyzing the phase structure and microscopic morphology of the samples using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and specific surface area detection. The results show that the ideal reaction condition is 320 g/L K2O with solid reactants at 200 °C for 1 h. The separation rate of Na in the sodalite-katoite mixture reached 93.60%, with potassium aluminum silicate and katoite being the primary phases of the product, with a mesoporous structure and easy to be absorbed by crops. The bauxite residue transformation residue consisted of katoite and kaliophilite. With a total effective K2O, CaO, and SiO2 content of 38.22%, the Na2O content was 0.54%, meeting the requirements of compound fertilizer content on the market. The transformation mechanism is a dissolution-precipitation controlled sodium-potassium ion replacement reaction. This study provides theoretical guidance for the preparation of mineral fertilizer from bauxite residue and has practical production potential, opening up a new perspective for bauxite residue resource usage in the agricultural field.


Asunto(s)
Óxido de Aluminio , Potasio , Óxido de Aluminio/química , Fertilizantes , Iones , Dióxido de Silicio , Sodio
3.
Bull Environ Contam Toxicol ; 109(1): 101-109, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35552770

RESUMEN

The Bayer red mud is the solid waste generated during the production of alumina by the Bayer process. At present, the stock of red mud in China exceeds 1.1 billion tons, covering an area of more than 120,000 mu, and the annual production volume is increasing by 100 million tons. The comprehensive utilization of red mud is still a difficult problem. Therefore, it is of great significance to actively explore new methods for removing sodium from red mud. In this study, the traditional red mud desalination process and the slurry electrolysis process are combined, and the influence of three different leaching agents on the leaching and sodium removal of red mud slurry in the presence of an electric field is explored. In the slurry electrolysis experiment, it was found that the sodium removal rate obtained by different leaching agents was CaO > CaCl2 > HCl. The red mud leached with pure dilute hydrochloric acid has the highest Na removal rate, which is 93.11%. In view of this situation, a pre-slurry-electrolysis cycle process with HCl as leaching agent was proposed. The core of slurry electrolysis is electrolyzing NaCl solution, and HCl only participates in the process as circulating medium. The design of this process reduces cost and increases efficiency.


Asunto(s)
Óxido de Aluminio , Electrólisis , China , Sodio
4.
Bull Environ Contam Toxicol ; 109(1): 68-75, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35445821

RESUMEN

Hydrogarnets are vital intermediate products in the calcification- carbonation method, which is designed for Bayer red mud treatment. Their carbonation performance greatly depends on SiO2 substitution. In this study, different SiO2-substituted hydrogarnets were synthesized and characterized. Then, batch experiments were performed to evaluate the potential effects of important parameters such as CO2 pressure, and SiO2 substitution degree (x) on the carbonation process. The SiO2 substitution degrees of the hydrogarnets synthesized at 60, 120, 180, and 240°C were 0.27, 0.36, 0.70, and 0.73, respectively. As the SiO2 substitution degree increased, the hydrogarnet carbonation extents gradually declined. With an increase in CO2 pressure, the hydrogarnet carbonation percentages increased gradually and rose from 80.33% to 98.19% within 120 min. The phases detected in the carbonized products were strip-like aragonite as well as some calcite; the Al-rich and Si-rich phases in the carbonized products were amorphous.


Asunto(s)
Dióxido de Carbono , Dióxido de Silicio , Carbonato de Calcio
5.
Bull Environ Contam Toxicol ; 109(1): 149-154, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35486157

RESUMEN

A new method of solid-phase reduction magnetic separation with pyrite as a reducing agent was proposed in order to realize resource utilization of high iron bauxite residue while reducing environmental harm. FeS2 powder and high iron bauxite residue powder were uniformly blended and roasted in a closed environment. A magnetic separator was utilized to separate the magnetic iron concentrate at 2400 GS, and the recovery rates were calculated. Experimental results show that the best iron recovery was 91.5% at 1:6 roasted bauxite: residue at 800℃ for 2 h. The recovery of Fe can be improved by reducing high iron bauxite residue with pyrite, and iron in both pyrite and high iron bauxite residue can be recovered simultaneously, alleviating the pressure of iron ore resources and improving its utilization value.


Asunto(s)
Óxido de Aluminio , Hierro , Hierro/química , Polvos , Sulfuros
6.
Bull Environ Contam Toxicol ; 109(1): 209-214, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35230451

RESUMEN

The emission of bauxite residue continues to grow with the increase of alumina production capacity, along with the large amounts of bauxite residue currently stored in stockpiles. The exposed problems of high yield, strong alkalinity, low comprehensive utilization rate, and threats to the ecological environment are becoming increasingly prominent. With the strict requirements of environmental protection, improving the comprehensive utilization rate of bauxite residue and bulk consumption of bauxite residue has become an urgent issue to be solved. A large number of researchers have conducted in-depth investigations into the application of bauxite residue over a wide range, and this paper summarizes its application in the environment in recent years, providing guidance for the high value and harmless application of bauxite residue, which can help reduce environmental pollution and human life and health hazards caused by bauxite residue.


Asunto(s)
Óxido de Aluminio , Contaminación Ambiental , Conservación de los Recursos Naturales , Contaminación Ambiental/prevención & control , Humanos , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA