Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
IEEE J Biomed Health Inform ; 28(4): 2223-2234, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38285570

RESUMEN

Preterm birth is the leading cause of death in children under five years old, and is associated with a wide sequence of complications in both short and long term. In view of rapid neurodevelopment during the neonatal period, preterm neonates may exhibit considerable functional alterations compared to term ones. However, the identified functional alterations in previous studies merely achieve moderate classification performance, while more accurate functional characteristics with satisfying discrimination ability for better diagnosis and therapeutic treatment is underexplored. To address this problem, we propose a novel brain structural connectivity (SC) guided Vision Transformer (SCG-ViT) to identify functional connectivity (FC) differences among three neonatal groups: preterm, preterm with early postnatal experience, and term. Particularly, inspired by the neuroscience-derived information, a novel patch token of SC/FC matrix is defined, and the SC matrix is then adopted as an effective mask into the ViT model to screen out input FC patch embeddings with weaker SC, and to focus on stronger ones for better classification and identification of FC differences among the three groups. The experimental results on multi-modal MRI data of 437 neonatal brains from publicly released Developing Human Connectome Project (dHCP) demonstrate that SCG-ViT achieves superior classification ability compared to baseline models, and successfully identifies holistically different FC patterns among the three groups. Moreover, these different FCs are significantly correlated with the differential gene expressions of the three groups. In summary, SCG-ViT provides a powerfully brain-guided pipeline of adopting large-scale and data-intensive deep learning models for medical imaging-based diagnosis.


Asunto(s)
Conectoma , Nacimiento Prematuro , Femenino , Niño , Humanos , Recién Nacido , Preescolar , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Conectoma/métodos , Suministros de Energía Eléctrica
2.
J Food Sci ; 88(6): 2339-2352, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37138542

RESUMEN

Umami amino acids inhibit the bitter and astringent taste presentation of catechins, which is essential for the taste regulation of green tea. In this study, the concentration-intensity trends and taste threshold properties of major catechin monomers were investigated using an electronic tongue. The taste and chemical structure interactions between the ester-type catechins and theanine, glutamic acid (Glu), and aspartic acid (Asp) were further analyzed by in vitro simulation and analysis of their reciprocal chemical structures. The results showed that the bitterness and astringency of the major catechin monomers increased with increasing concentration, and their bitterness thresholds and their electron tongue response values were higher than those of the astringent values, while the bitterness and astringency of the ester-type catechins were higher than those of the nonester type. The three amino acids inhibited the bitterness intensity of ester catechins (epigallocatechin gallate, epicatechin gallate, and gallocatechin gallate) at different concentrations, and the effects on the astringency intensity of ester catechins were complicated. Ester catechins significantly enhanced the umami intensity of theanine, Glu, and Asp at different concentrations. Their reciprocal chemical structures showed that hydrogen bonding was the main interaction force between the three ester-type catechins and the umami amino acids, with theanine and Glu interacting more strongly with ester-type catechins than Asp, and Glu having a lower binding energy to ester-type catechins, which bonded more easily.


Asunto(s)
Catequina , , Té/química , Catequina/análisis , Aminoácidos , Nariz Electrónica , Astringentes/análisis , Ácido Glutámico
3.
Crit Rev Food Sci Nutr ; 63(9): 1277-1292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34382897

RESUMEN

As the second most abundant trace element in the human body, zinc nutrition is constantly a hot topic. More than one-third population is suffering zinc deficiency, which results in various types of diseases or nutritional deficiencies. Traditional ways of zinc supplementation seem with low absorption rates and significant side effects. Zinc supplements with dietary components are easily accessible and improve zinc utilization rate significantly. Also, mechanisms of maintaining zinc homeostasis are of broad interest. The present review focuses on zinc nutrition in human health in inductive methods. Mainly elaborate on different diseases relating to zinc disorder, highlighting the impact on the immune system and the recent COVID-19. Then raise food-derived zinc-binding compounds, including protein, peptide, polysaccharide, and polyphenol, and also analyze their possibilities to serve as zinc complementary. Finally, illustrate the way to maintain zinc homeostasis and the corresponding mechanisms. The review provides data information for maintaining zinc homeostasis with the food-derived matrix.


Asunto(s)
COVID-19 , Desnutrición , Humanos , Zinc , COVID-19/prevención & control , Dieta , Suplementos Dietéticos , Estado Nutricional
4.
Med Image Anal ; 80: 102518, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35749981

RESUMEN

Mounting evidence has demonstrated that complex brain function processes are realized by the interaction of holistic functional brain networks which are spatially distributed across specific brain regions in a temporally dynamic fashion. Therefore, modeling spatio-temporal patterns of holistic functional brain networks plays an important role in understanding brain function. Compared to traditional modeling methods such as principal component analysis, independent component analysis, and sparse coding, superior performance has been achieved by recent deep learning methodologies. However, there are still two limitations of existing deep learning approaches for functional brain network modeling. They either (1) merely modeled a single targeted network and ignored holistic ones at one time, or (2) underutilized both spatial and temporal features of fMRI during network modeling, and the spatial/temporal accuracy was thus not warranted. To address these limitations, we proposed a novel Multi-Head Guided Attention Graph Neural Network (Multi-Head GAGNN) to simultaneously model both spatial and temporal patterns of holistic functional brain networks. Specifically, a spatial Multi-Head Attention Graph U-Net was first adopted to model the spatial patterns of multiple brain networks, and a temporal Multi-Head Guided Attention Network was then introduced to model the corresponding temporal patterns under the guidance of modeled spatial patterns. Based on seven task fMRI datasets from the public Human Connectome Project and resting state fMRI datasets from the public Autism Brain Imaging Data Exchange I of 1448 subjects, the proposed Multi-Head GAGNN showed superior ability and generalizability in modeling both spatial and temporal patterns of holistic functional brain networks in individual brains compared to other state-of-the-art (SOTA) models. Furthermore, the modeled spatio-temporal patterns of functional brain networks via the proposed Multi-Head GAGNN can better predict the individual cognitive behavioral measures compared to the other SOTA models. This study provided a novel and powerful tool for brain function modeling as well as for understanding the brain-cognitive behavior associations.


Asunto(s)
Conectoma , Red Nerviosa , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Redes Neurales de la Computación
5.
Int J Biol Macromol ; 191: 152-160, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34547309

RESUMEN

The favorable physicochemical properties are essential for the application of protein-based nanovehicles in the field of biomaterials. Herein, we found that the thermal stability of Marsupenaeus japonicus ferritin (MjFer) (Tm = 109.1 ± 0.4 °C) is markedly higher than human H-chain ferritin (HuHF) (Tm = 87.7 ± 0.3 °C), although they share a high structural similarity. Multiple results indicated that the promoted thermal stability of MjFer is mainly derived from the salt bridges located at the C3 interface. Consequently, MjFer exhibits strong protective effects on encapsulated curcumin upon exposure at high temperatures. In contrast, most of the curcumin loaded HuHF composites precipitated rapidly under the same conditions. These findings elucidated the molecular mechanism of the hyperthermostability of MjFer and illustrated that MjFer could act as a robust insulation nanocarrier for bioactive compounds against various thermal treatments.


Asunto(s)
Suplementos Dietéticos , Ferritinas/química , Nanopartículas/química , Vehículos Farmacéuticos/química , Animales , Curcumina/administración & dosificación , Ferritinas/genética , Mutación , Penaeidae/química , Dominios Proteicos , Estabilidad Proteica
6.
Nature ; 589(7841): 270-275, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33116299

RESUMEN

There is an urgent need to create novel models using human disease-relevant cells to study severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) biology and to facilitate drug screening. Here, as SARS-CoV-2 primarily infects the respiratory tract, we developed a lung organoid model using human pluripotent stem cells (hPSC-LOs). The hPSC-LOs (particularly alveolar type-II-like cells) are permissive to SARS-CoV-2 infection, and showed robust induction of chemokines following SARS-CoV-2 infection, similar to what is seen in patients with COVID-19. Nearly 25% of these patients also have gastrointestinal manifestations, which are associated with worse COVID-19 outcomes1. We therefore also generated complementary hPSC-derived colonic organoids (hPSC-COs) to explore the response of colonic cells to SARS-CoV-2 infection. We found that multiple colonic cell types, especially enterocytes, express ACE2 and are permissive to SARS-CoV-2 infection. Using hPSC-LOs, we performed a high-throughput screen of drugs approved by the FDA (US Food and Drug Administration) and identified entry inhibitors of SARS-CoV-2, including imatinib, mycophenolic acid and quinacrine dihydrochloride. Treatment at physiologically relevant levels of these drugs significantly inhibited SARS-CoV-2 infection of both hPSC-LOs and hPSC-COs. Together, these data demonstrate that hPSC-LOs and hPSC-COs infected by SARS-CoV-2 can serve as disease models to study SARS-CoV-2 infection and provide a valuable resource for drug screening to identify candidate COVID-19 therapeutics.


Asunto(s)
Antivirales/farmacología , COVID-19/virología , Colon/citología , Evaluación Preclínica de Medicamentos/métodos , Pulmón/citología , Organoides/efectos de los fármacos , Organoides/virología , SARS-CoV-2/efectos de los fármacos , Animales , COVID-19/prevención & control , Colon/efectos de los fármacos , Colon/virología , Aprobación de Drogas , Femenino , Xenoinjertos/efectos de los fármacos , Humanos , Técnicas In Vitro , Pulmón/efectos de los fármacos , Pulmón/virología , Masculino , Ratones , Organoides/citología , Organoides/metabolismo , SARS-CoV-2/genética , Estados Unidos , United States Food and Drug Administration , Tropismo Viral , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
7.
Brain Imaging Behav ; 13(5): 1427-1443, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30178424

RESUMEN

Discovery and representation of common structural and functional cortical architectures has been a significant yet challenging problem for years. Due to the remarkable variability of structural and functional cortical architectures in human brain, it is challenging to jointly represent a common cortical architecture which can comprehensively encode both structure and function characteristics. In order to better understand this challenge and considering that macaque monkey brain has much less variability in structure and function compared with human brain, in this paper, we propose a novel computational framework to apply our DICCCOL (Dense Individualized and Common Connectivity-based Cortical Landmarks) and HAFNI (Holistic Atlases of Functional Networks and Interactions) frameworks on macaque brains, in order to jointly represent structural and functional connectome-scale profiles for identification of a set of consistent and common cortical landmarks across different macaque brains based on multimodal DTI and resting state fMRI (rsfMRI) data. Experimental results demonstrate that 100 consistent and common cortical landmarks are successfully identified via the proposed framework, each of which has reasonably accurate anatomical, structural fiber connection pattern, and functional correspondences across different macaque brains. This set of 100 landmarks offer novel insights into the structural and functional cortical architectures in macaque brains.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma/métodos , Macaca , Animales , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética
8.
Ren Fail ; 38(10): 1717-1725, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27800691

RESUMEN

BACKGROUND: The aim of this study was to assess the preventive effect of xuezhikang (XZK) to replace atorvastatin on the contrast media-induced acute kidney injury (CI-AKI). METHODS: The male Sprague-Dawley rats were divided into five groups: group 1 (sham), injected with normal saline; group 2 (XZK), treated with XZK; group 3 contrast media (CM), injected with CM; group 4 (CM + ATO), injected with CM + pretreatment with atorvastatin; group 5 (CM + XZK), injected with CM + pretreatment with XZK. Twenty-four hours after injection with normal saline or CM, the blood sample and the kidneys were collected for the measurement of biochemical parameters, oxidative stress markers, nitric oxide production, inflammatory parameters, as well as renal histopathology and apoptosis detection. RESULTS: Our results indicated that XZK restored the renal function by reducing serum blood urea nitrogen (BUN) and serum creatinine (Scr), depressing renal malondialdehyde (MDA), increasing renal NO production, decreasing TNF-ɑ and IL-6 expression, attenuating renal pathological changes and inhibiting the apoptosis of renal tubular cells. CONCLUSION: XZK's therapeutic effect is similar, or even better than atorvastatin at the same effectual dose in some parts.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Estrés Oxidativo/efectos de los fármacos , Lesión Renal Aguda/inducido químicamente , Animales , Nitrógeno de la Urea Sanguínea , Medios de Contraste/efectos adversos , Citocinas/metabolismo , Glutatión/metabolismo , Riñón/fisiopatología , Pruebas de Función Renal , Masculino , Óxido Nítrico/metabolismo , Ratas , Ratas Sprague-Dawley
9.
IEEE Trans Biomed Eng ; 62(4): 1120-31, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25420254

RESUMEN

For decades, it has been largely unknown to what extent multiple functional networks spatially overlap/interact with each other and jointly realize the total cortical function. Here, by developing novel sparse representation of whole-brain fMRI signals and by using the recently publicly released large-scale Human Connectome Project high-quality fMRI data, we show that a number of reproducible and robust functional networks, including both task-evoked and resting state networks, are simultaneously distributed in distant neuroanatomic areas and substantially spatially overlapping with each other, thus forming an initial collection of holistic atlases of functional networks and interactions (HAFNIs). More interestingly, the HAFNIs revealed two distinct patterns of highly overlapped regions and highly specialized regions and exhibited that these two patterns of areas are reciprocally localized, revealing a novel organizational principle of cortical function.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Bases de Datos Factuales , Femenino , Humanos , Masculino , Adulto Joven
10.
Bone ; 64: 115-23, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24731925

RESUMEN

The consumption of milk is declining in industrialized countries, leading to inadequate calcium intake. Therefore, it is important to explore a new class of Ca-enriched nutrient for the fortification of food. In this work, we prepared a novel class of soluble and edible Ca-protein complexes where approximately 140 calcium ions were encapsulated within a phytoferritin nanocage. As an alternative to other organic and/or inorganic carriers, protein nanocages were found to provide a unique vehicle of biological origin for the intracellular delivery of calcium ions for supplementation. Such encapsulation can protect calcium ions within protein cages against dietary factors such as tannic acid (TA), oxalic acid (OA), and other divalent metal ions in foodstuffs. We demonstrated that the calcium-containing ferritin composites can be absorbed by Caco-2 cells through a process where a TfR1 receptor is involved, whereas the uptake of free calcium ions has been known to be associated with another receptor, DMT1, indicating that the calcium ions encapsulated in supramolecular protein cages can be internalized by the Caco-2 cells through a different pathway from its free analogs for calcium supplementation.


Asunto(s)
Calcio/administración & dosificación , Suplementos Dietéticos , Ferritinas/química , Nanoestructuras , Células CACO-2 , Calcio/metabolismo , Calorimetría , Humanos , Microscopía Electrónica de Transmisión
11.
Plant Foods Hum Nutr ; 66(3): 212-7, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21720790

RESUMEN

The objective of this study was to evaluate the effect of proanthocyanidins (PAs) on iron uptake from soybean seed ferritin (SSF) crude by rats with iron deficiency anemia (IDA) for the first time. Six groups of Sprague-Dawley (SD) rats (n = 10) were used, which contain (1) SSF crude group; (2) SSF crude + PAs group; (3) PAs group; (4) FeSO(4) group; (5) iron deficiency control group; and (6) control group. The bioavailability of iron was examined by measuring hemoglobin (Hb) concentration value, red blood cell (RBC) numbers, and serum iron stores. After 8 weeks, Hb concentration was almost recovered to the normal level upon feeding SSF crude or FeSO(4) to rats. In contrast, Hb concentration was recovered to less extent when SSF crude plus PAs was used instead of SSF crude alone (P < 0.05). A similar profile was observed with these three sample groups when serum iron and RBC were used as parameters. All rats in PAs group died at the 8th week. Taken together, all these results demonstrated that PAs inhibited iron uptake of rats from SSF, and are toxic for rats with IDA.


Asunto(s)
Anemia Ferropénica/metabolismo , Ferritinas/metabolismo , Glycine max , Hemoglobinas/metabolismo , Hierro/farmacocinética , Extractos Vegetales/farmacología , Proantocianidinas/efectos adversos , Absorción , Anemia Ferropénica/sangre , Animales , Disponibilidad Biológica , Eritrocitos/efectos de los fármacos , Hierro/sangre , Compuestos de Hierro/farmacología , Deficiencias de Hierro , Proteínas de Plantas/metabolismo , Ratas , Ratas Sprague-Dawley
12.
J Agric Food Chem ; 58(1): 635-41, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-19921836

RESUMEN

Anthocyanins have received much attentions due to their various activities. Phytoferritin represents a novel alternative for iron supplementation. In the present study, it was found that all tested anthocyanins such as cyanidin (Cy), delphinidin (Dp), delphinidin-3-O-glucoside (Dp3glc), malvidin (Mv), petunidin (Pt), and petunidin-3-O-glucoside (Pt3glc) had a strong interaction with SSF, respectively, resulting in iron release from soybean seed ferritin (SSF) just as for ascorbate. The order of iron release from SSF is as follows: Dp>Cy>Pt>Mv>Dp3glc>Pt3glc. Their ability to liberate iron from SSF is associated with the size of the molecules and the chemical structures but mainly depends on their chelating activity with Fe2+. Interestingly, these pigments inhibited SSF degradation during the iron release to different extents while ascorbate did not. The difference in protective effects on SFF between ascorbate and the anthocyanins is in good agreement with their different Fe2+-chelating activities.


Asunto(s)
Antocianinas/química , Ácido Ascórbico/química , Ferritinas/química , Glycine max/química , Quelantes del Hierro/química , Hierro/química , Cinética , Unión Proteica , Semillas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA