Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 252: 126355, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37607653

RESUMEN

The combination of polysaccharides can obtain stable, degradable, and environmentally friendly hydrogels, which have broad application prospects in adsorbents assembly. With Ca2+ and Mg2+ as crosslinkers, a new pectin/Konjac glucomannan/Ca-Mg composite hydrogel was prepared for phosphate adsorption by the alkali-thermal co-reaction method. Since Mg(OH)2 can create a suitable pH condition for phosphate adsorption by Ca, Ca and Mg synergistically promoted phosphate adsorption and remained stable in the pH range of 4 to 10. FTIR, SEM-EDS, XRD, XPS, and zero potential analysis corroborated that the hydrogel used Ca and Mg as active sites to trap pollutants by electrostatic adsorption and fix phosphate through complexation to form Mg3(PO4)2·8H2O and CaPO3(OH)2·H2O. Furthermore, it is unnecessary to separate the recovered phosphate from the hydrogel, and it can be used directly as a fertilizer. By being reused in the soil, it promoted seed germination and seedling growth. This adsorbent has the potential for recovery as a phosphorus-containing organic fertilizer after phosphorus adsorption.


Asunto(s)
Fosfatos , Contaminantes Químicos del Agua , Fosfatos/química , Pectinas , Hidrogeles/química , Fertilizantes , Fósforo/química , Adsorción , Cinética , Contaminantes Químicos del Agua/química
2.
Sci Total Environ ; 868: 161518, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36642276

RESUMEN

Cyanobacterial blooms are a major environmental problem in eutrophic reservoirs in China. Algal cells can migrate to the sediment surface in winter and maintain biological activity, which could further affect the cycling process of sediment phosphorus (P) and iron (Fe). In this study, a pilot simulation experiment was conducted to investigate the effect of overwintering cyanobacteria (Owc) on P and Fe regeneration across the sediment-water interface (SWI). Owc esterase activity ranged from 16.4 to 26.6 nmol (FDA)/(L·h), with a fluctuating increasing trend within the incubation time. Compared with the control (no Owc), Owc treatment increased the redox potential value (Eh) at the SWI but slightly decreased the pH during the first stage of this experiment (0-24 d); however, the Eh at the SWI under Owc treatment decreased to 50.9 % of that of the control on day 90. The Fe(II) could rapidly oxidized to Fe (oxyhydro)oxides and combine with phosphate in high Eh environments, and Owc inhibited P and Fe release at the SWI within 24 days; however, the continuous decrease in Eh resulted in the reduction of Fe(III). Thus, the Fe concentration measured via diffusive gradients in thin films in the Owc-treated interstitial water gradually increased to 1.92 times that of the control, promoting the release of Fe and P across the SWI. For 13 days after Owc addition, the amount of mobile P in the sediment was significantly higher than that in the control, and it gradually decreased from day 24 to 90, with the lowest being approximately 74.1 % of the amount in the control. The reactive Fe concentration in the sediment showed a similar variation trend. These results indicate that mobile P and reactive Fe in the sediment could be the main sources of regeneration across the SWI in the presence of Owc.


Asunto(s)
Cianobacterias , Contaminantes Químicos del Agua , Hierro/análisis , Fósforo/análisis , Eutrofización , Agua , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , Lagos , Monitoreo del Ambiente/métodos
3.
J Environ Manage ; 290: 112575, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33862319

RESUMEN

A vegetated drainage ditch (VDD) system is an effective management practice for removing excess phosphorus (P) from agricultural runoff. However, the maximization of P removing efficiency by VDD remains a challenge. In this study, new VDDs with akadama clay barriers (particle size of clay: 1-6 mm; height of barrier: 5-15 cm and length of barrier: 10-90 cm) were designed in lab scale, and the mechanism of phosphate removal by akadama clay was investigated. It was found that a new VDD with akadama clay barriers (particle size:1 mm; height:10 cm and length: 90 cm) exhibited the highest removal efficiency of total P (TP) (97.1%), particulate P(PP) (96.9%), and dissolved P (DP) (97.4%), respectively. The retained P was mainly adsorbed in akadama clay barrier sections, and a low concentration of P was observed in soil sections in the new VDD. The maximum adsorption capacity of phosphate to akadama clay was 5.06 mg/g at 298 K, and XPS analysis indicated that phosphate was adsorbed by the inner-sphere complexation formation with the metal elements (Al, Fe). This study indicates that the new VDD with akadama clay barriers is a promising technique to efficiently remove P from agricultural runoff and significantly minimize the risk of P release into streams through runoff.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Agricultura , Arcilla , Ambiente , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
4.
Sci Total Environ ; 634: 760-768, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29653421

RESUMEN

In order to seek a possible path for utilization bottom ash, the solid waste from biomass incineration for power generation, its basic characteristics were investigated, and removing methylene blue (MB) from aqueous solution was attempted as well. Results indicated bottom ash dominantly contained Si and Ca-related minerals with >35 mineral elements, meanwhile, it was typically characterized by alkalinity (pH of 9.5) and low specific surface area (14.5m2/g). As the only bottom ash was employed for removing MB, removal efficiency was lower than 44%, however, it was greatly improved to 100% as hydrogen peroxide was supplemented (final concentration of 4.0%). Based on the elucidated mechanisms, Fenton-like reaction was triggered by bottom ash, which was dominantly responsible for removing MB, rather than the adsorption by bottom ash. Besides, increasing reaction temperature and duration dramatically promoted MB removal by bottom ash with the aid of hydrogen peroxide (HBA). A great promotion on MB removal from 92.3mg/g to 143.9mg/g was achieved as pH was adjusted from 2.0 to 5.0, indicating MB removal was pH-dependent. The maximum removal of 260.9mg/g was achieved by HBA at a relatively high initial MB concentration of 2000.0mg/L, suggesting a great potential in treating dye wastewater by functionalizing bottom ash with the aid of hydrogen peroxide. Moreover, the released heavy metals and derived by-products from MB removal were acceptable in consideration of their potential environmental risks. Thus, the current work offers a new path to valorize the solid waste in biomass electricity generation plant.

5.
Appl Biochem Biotechnol ; 173(2): 409-20, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24652599

RESUMEN

The enzymatic hydrolysis of the native and the pretreated palm pressed fiber (PPF) was deeply investigated by using the enzyme cocktail ACCELLERASE 1500. Together with the spent PPF from the first hydrolysis and the further doubly-treated PPF, the proportions of three main components were determined and analyzed based on a triangle figure. The proportion (cellulose/hemicelluloses/lignin) in the spent PPF was equal to 44:23:33 and the surface morphology of the spent PPF looks very similar to the native PPF surface showing poor hydrolysis efficiency. After further double treatment, the proportion was changed evidently from the original 44:23:33 to 54:21:25 and the surface structure was significantly disrupted showing a potential to be hydrolyzed completely. Additionally, all samples were characterized by Fourier transform infrared spectroscopy and X-ray diffractogram through considerations of alkaline solution treatment, so as to understand better the nature of biomass hydrolysis, from the aspect of three biomass components.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Lignina/química , Aceites de Plantas/química , Polisacáridos/química , beta-Glucosidasa/metabolismo , Biomasa , Hidrólisis , Aceite de Palma , Factores de Tiempo
6.
Mar Pollut Bull ; 81(1): 185-90, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24559739

RESUMEN

Magnetic expanded graphite (MEG) was prepared using the blended calcination method under a nitrogen atmosphere. MEG was characterized by scanning electron microscope (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and vibrating sample magnetization (VSM). Results show that the cobalt ferrite nanoparticles were uniformly and efficiently deposited on expanded graphite (EG). The saturation magnetization reached 55.05 emu g(-1), and the adsorption capacity of MEG under the optimal condition was 35.72 g g(-1) for crude oil.


Asunto(s)
Grafito/química , Fenómenos Magnéticos , Contaminación por Petróleo/prevención & control , Petróleo/análisis , Adsorción , Compuestos Férricos/química , Nanopartículas del Metal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA