Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 325(Pt B): 116589, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36308960

RESUMEN

Contradiction between growing plantation economic demand and agro-ecological degradation has always restricted sustainable development of agricultural countries. This study applied the unit inventory analysis to evaluate the productions and discharges of farmland non-point source (FNPS) nitrogen (TN) and phosphorus (TP) among China's nine national-level agricultural districts over 1999-2019. On this basis, we quantified the evolutionary relationship between plantation economic output and FNPS pollution based on optimal regression fitting. The results showed that over 1999-2019, farmland cumulative TN and TP discharges for the whole China were approximately 15807 × 104 t and 1312 × 104 t, with prominent district heterogeneity. According to FNPS discharge magnitudes, China's agricultural districts can be classified into three categories: high, moderate and slight discharge zones. Huang-Huai-Hai Plain and Middle-lower Yangtze Plain were identified as the main severely-polluted districts. Mineral fertilizer is the primary contributor to FNPS pollution. Annual FNPS load showed a trend of increasing followed by decreasing, and the peak interval was recorded in 2014-2016. Spatiotemporal dynamics in FNPS discharge intensities were disparate from that in discharge magnitudes. SC has the highest TN discharge intensity, with an annual average intensity of 0.068 t/ha, followed by MLYP (0.044 t/ha) and HHHP (0.041 t/ha). HHHP has the highest TP discharge intensity, with an annual average intensity of 0.0051 t/ha, followed by SC (0.0038 t/ha) and MLYP (0.0031 t/ha). District-based agro-ecological restoration strategies were accordingly proposed considering FNPS discharge magnitude and intensity concurrently. In most agricultural districts, with the growing economic output in plantation, the FNPS load showed an increase followed by a decrease or to leveling off. Furthermore, with the increasing TN/TP economic partial productivity, the FNPS TN/TP discharge intensities reached the climax, then declined or tended to be flattening out.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Granjas , Monitoreo del Ambiente/métodos , Desarrollo Económico , Contaminantes Químicos del Agua/análisis , Fósforo/análisis , Nitrógeno/análisis , China , Nutrientes
2.
J Environ Sci (China) ; 78: 193-203, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30665638

RESUMEN

Microbially mediated bioreduction of iron oxyhydroxide plays an important role in the biogeochemical cycle of iron. Geobacter sulfurreducens is a representative dissimilatory iron-reducing bacterium that assembles electrically conductive pili and cytochromes. The impact of supplementation with γ-Fe2O3 nanoparticles (NPs) (0.2 and 0.6 g) on the G. sulfurreducens-mediated reduction of ferrihydrite was investigated. In the overall performance of microbial ferrihydrite reduction mediated by γ-Fe2O3 NPs, stronger reduction was observed in the presence of direct contact with γ-Fe2O3 NPs than with indirect contact. Compared to the production of Fe(II) derived from biotic modification with ferrihydrite alone, increases greater than 1.6- and 1.4-fold in the production of Fe(II) were detected in the biotic modifications in which direct contact with 0.2 g and 0.6 g γ-Fe2O3 NPs, respectively, occurred. X-ray diffraction analysis indicated that magnetite was a unique representative iron mineral in ferrihydrite when active G. sulfurreducens cells were in direct contact with γ-Fe2O3 NPs. Because of the sorption of biogenic Fe(II) onto γ-Fe2O3 NPs instead of ferrihydrite, the addition of γ-Fe2O3 NPs could also contribute to increased duration of ferrihydrite reduction by preventing ferrihydrite surface passivation. Additionally, electron microscopy analysis confirmed that the direct addition of γ-Fe2O3 NPs stimulated the electrically conductive pili and cytochromes to stretch, facilitating long-range electron transfer between the cells and ferrihydrite. The obtained findings provide a more comprehensive understanding of the effects of iron oxide NPs on soil biogeochemistry.


Asunto(s)
Biodegradación Ambiental , Compuestos Férricos/metabolismo , Geobacter/fisiología , Nanopartículas/metabolismo , Compuestos Férricos/química , Óxido Ferrosoférrico , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA