Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 281: 114562, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34438027

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine formula Danggui-Shaoyao-San (DSS) has been reported to show therapeutic effect on dementia. AIM OF THE STUDY: The present study aims to investigate whether DSS treatment could alleviate diabetes-induced cognitive dysfunction, and explores its neuroprotective mechanism on db/db mice. MATERIALS AND METHODS: The female db/db mice were randomly divided into model group, DSS low-dose group and DSS high-dose group. Homologous female db/m mice were used as the control group. DSS was intragastric administrated for 15 weeks. Glucose tolerance, insulin tolerance, blood glucose and blood lipid levels were measured. Morris water maze was used to measure spatial learning and memory ability in mice. Nissl staining and Tunel staining were used to measure the changes of brain neurons, and ELISA kits were used to measure levels of inflammatory mediators (PGE2, TXB2 and LTB4). The kits detected oxidative stress (MDA, SOD, CAT, GSH-PX), nitrosative stress (NO, iNOS, TNOS) and glucose metabolism (LDH, PK, HK) levels. Western blot and immunofluorescence detected neurotrophic factors (PSD95, BDNF, NGF and SYN), apoptosis (Bcl-2, Bax, Bcl-xl, Caspase-3) and changes of ERα, O-GlcNAc, OGT, OGA levels. RESULTS: Morris water maze results showed that DSS could improve the learning and memory abilities of female db/db mice. Nissl staining showed that DSS could relieve hippocampal neurons damage of db/db mice. In addition, the serological tests showed that DSS could improve the impaired glucose tolerance and insulin resistance, while reduce hyperlipemia in db/db mice. Besides, DSS treatment increased the activities of SOD, GSH-PX, and CAT, and reduced MDA, NO, iNOs, tNOS, PGE2, TXB2 and LTB4 levels. Western blot and immunofluorescence results of PSD95, BDNF, NGF, and SYN showed that DSS could improve the expressions of neurotrophic factors. Meanwhile, Tunel staning and Western blot (Bcl-2, Bax, Bcl-xl, Caspase-3) results indicated that DSS could reduce neuronal apoptosis. Finally, Western blot (ERα, O-GlcNAc, OGA, and OGT) and immunofluorescence (ERα and O-GlcNAc) results indicated that DSS could increase the levels of ERα and OGA, decrease the levels of O-GlcNAc and OGT. CONCLUSION: DSS alleviate DE might be related to improve the abnormal O-GlcNAc-modification of ERα.


Asunto(s)
Acetilglucosamina/metabolismo , Encefalopatías/etiología , Complicaciones de la Diabetes/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Receptor alfa de Estrógeno/metabolismo , Fitoterapia , Animales , Disfunción Cognitiva/tratamiento farmacológico , Receptor alfa de Estrógeno/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Insulina/farmacología , Ratones , Ratones Endogámicos NOD , Prueba del Laberinto Acuático de Morris , Fármacos Neuroprotectores/farmacología
2.
Chin J Nat Med ; 16(10): 756-765, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30322609

RESUMEN

Liver injury remains a significant global health problem and has a variety of causes, including oxidative stress (OS), inflammation, and apoptosis of liver cells. There is currently no curative therapy for this disorder. Sanwei Ganjiang Prescription (SWGJP), derived from traditional Chinese medicine (TCM), has shown its effectiveness in long-term liver damage therapy, although the underlying molecular mechanisms are still not fully understood. To explore the underlining mechanisms of action for SWGJP in liver injury from a holistic view, in the present study, a systems pharmacology approach was developed, which involved drug target identification and multilevel data integration analysis. Using a comprehensive systems approach, we identified 43 candidate compounds in SWGJP and 408 corresponding potential targets. We further deciphered the mechanisms of SWGJP in treating liver injury, including compound-target network analysis, target-function network analysis, and integrated pathways analysis. We deduced that SWGJP may protect hepatocytes through several functional modules involved in liver injury integrated-pathway, such as Nrf2-dependent anti-oxidative stress module. Notably, systems pharmacology provides an alternative way to investigate the complex action mode of TCM.


Asunto(s)
Medicamentos Herbarios Chinos/química , Hepatopatías/tratamiento farmacológico , Hígado/efectos de los fármacos , Medicamentos Herbarios Chinos/administración & dosificación , Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/lesiones , Hígado/metabolismo , Hepatopatías/genética , Hepatopatías/metabolismo , Estrés Oxidativo/efectos de los fármacos , Farmacología
3.
J Ethnopharmacol ; 186: 91-102, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27036629

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Kegan Liyan oral liquid (KGLY), a Chinese prescription modified from classic formulas Yin-Qiao-San (from TCM classic Wenbing Tiaobian) and Shen-Jie-San (first mentioned in Shanghan Wenyi Tiaobian), has been reported to exert heat-clearing and detoxifying effects and used extensively for the treatment of severe pulmonary diseases in clinics including influenza, cough and pneumonia. AIM OF THIS STUDY: The purpose of this study was to investigate the protective effect of KGLY on lipopolysaccharide (LPS) induced acute lung injury (ALI) in mice and to illuminate the underlying mechanisms. MATERIALS AND METHODS: Mice were orally administrated with KGLY (50, 100 and 150mg/kg) before intratracheal instillation of LPS. 24h post LPS challenge, lung tissues and the bronchoalveolar lavage fluid (BALF) were collected for lung wet/dry (W/D) weight ratio, histopathological examinations and biochemical analyses. The cell counts, protein concentration, interleukin-1ß (IL-1ß), interleukin-6 (IL-6), necrosis factor-α (TNF-α), macrophage inflammatory protein-2 (MIP-2) in BALF, superoxide dismutase (SOD), glutathione (GSH), myeloperoxidase (MPO) and malondialdehyde (MDA) levels were detected. Meanwhile, the activation of toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), as well as matrix metalloproteinases 9 (MMP-9) were determined by western blot assay. RESULTS: KGLY significantly prolonged mice survival time and ameliorated LPS-induced edema, thickening of alveolar septa and inflammatory cell infiltration in a dose-dependent manner. Additionally, KGLY markedly attenuated LPS-induced acute pulmonary inflammation via decreasing the expressions of cytokines and chemokines (IL-1ß, IL-6, TNF-α, and MIP-2), enhanced the activities of anti-oxidative indicators (SOD and GSH), suppressed the levels of MPO and MDA, and down-regulated the expressions of TLR4, NF-κB and MMP9. CONCLUSIONS: The results suggested that the relieving effect of KGLY against LPS-induced ALI might be partially due to suppression of oxidative stress and inflammatory response, inhibition of TLR4-mediated NF-κB activation, and down-regulation of MMP9 expression, indicating it may be a potential therapeutic agent for ALI.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Medicamentos Herbarios Chinos/farmacología , Lipopolisacáridos/toxicidad , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/antagonistas & inhibidores , Lesión Pulmonar Aguda/tratamiento farmacológico , Administración Oral , Animales , Antioxidantes/metabolismo , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Citocinas/genética , Citocinas/metabolismo , Medicamentos Herbarios Chinos/química , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones , Estructura Molecular , FN-kappa B/genética , Transducción de Señal/efectos de los fármacos , Análisis de Supervivencia , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA