Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Curr Pharm Des ; 30(17): 1326-1340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616754

RESUMEN

BACKGROUND: Traditional Chinese medicine Scutellaria Baicalensis (SB), one of the clinical firstline heat-clearing drugs, has obvious symptomatic advantages for hepatic fibrosis with dampness-heat stasis as its syndrome. We aim to predict and validate the potential mechanism of Scutellaria baicalensis active ingredients against liver fibrosis more scientifically and effectively. METHODS: The underlying mechanism of Scutellaria baicalensis in inhibiting hepatic fibrosis was studied by applying network pharmacology, molecular docking and molecular dynamics simulation. Expression levels of markers in activated Hepatic Stellate Cells (HSC) after administration of three Scutellaria baicalensis extracts were determined by Western blot and Real-time PCR, respectively, in order to verify the anti-fibrosis effect of the active ingredients Results: There are 164 common targets of drugs and diseases screened and 115 signaling pathways obtained, which were mainly associated with protein phosphorylation, senescence and negative regulation of the apoptotic process. Western blot and Real-time PCR showed that Scutellaria baicalensis extracts could reduce the expression of HSC activation markers, and Oroxylin A had the strongest inhibitory effect on it. Molecular docking results showed that Oroxylin A had high binding activity to target proteins. Molecular dynamics simulation demonstrates promising stability of the Oroxylin A-AKT1 complex over the simulated MD time of 200 ns. CONCLUSION: Scutellaria baicalensis active ingredients may inhibit HSC proliferation, reduce the generation of pro-inflammatory factors and block the anti-inflammatory effect of inflammatory signal transduction by inducing HSC apoptosis and senescence, thus achieving the effect of anti-fibrosis.


Asunto(s)
Cirrosis Hepática , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Farmacología en Red , Extractos Vegetales , Scutellaria baicalensis , Scutellaria baicalensis/química , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Humanos , Animales , Medicina Tradicional China
2.
Eur J Med Res ; 29(1): 152, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438934

RESUMEN

Type 2 diabetes mellitus (T2DM) poses a significant global health burden. This is particularly due to its macrovascular complications, such as coronary artery disease, peripheral vascular disease, and cerebrovascular disease, which have emerged as leading contributors to morbidity and mortality. This review comprehensively explores the pathophysiological mechanisms underlying these complications, protective strategies, and both existing and emerging secondary preventive measures. Furthermore, we delve into the applications of experimental models and methodologies in foundational research while also highlighting current research limitations and future directions. Specifically, we focus on the literature published post-2020 concerning the secondary prevention of macrovascular complications in patients with T2DM by conducting a targeted review of studies supported by robust evidence to offer a holistic perspective.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Prevención Secundaria
3.
Water Res ; 254: 121430, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38461607

RESUMEN

Proper treatment of hypersaline and nutrient-rich food industry process water (FIPW) is challenging in conventional wastewater plants. Insufficient treatment leads to serious environmental hazards. However, bioremediation of FIPW with an indigenous microbial community can not only recover nutrients but generate biomass of diverse applications. In this study, monoculture of Halamphora coffeaeformis, together with synthetic bacteria isolated from a local wastewater plant, successfully recovered 91% of NH4+-N, 78% of total nitrogen, 95% of total phosphorus as well as 82% of total organic carbon from medium enriched with 10% FIPW. All identified organic acids and amino acids, except oxalic acid, were completely removed after 14 days treatment. A significantly higher biomass concentration (1.74 g L-1) was achieved after 14 days treatment in the medium with 10% FIPW than that in a nutrient-replete lab medium as control. The harvested biomass could be a potential feedstock for high-value biochemicals and fertilizer production, due to fucoxanthin accumulation (3 mg g-1) and a fantastic performance in P assimilation. Metagenomic analysis revealed that bacteria community in the algal system, dominated by Psychrobacter and Halomonas, also contributed to the biomass accumulation and uptake of nutrients. Transcriptomic analysis further disclosed that multiple pathways, involved in translation, folding, sorting and degradation as well as transport and catabolism, were depressed in H. coffeaeformis grown in FIPW-enriched medium, as compared to the control. Collectively, the proposed one-step strategy in this work offers an opportunity to achieve sustainable wastewater management and a way towards circular economy.


Asunto(s)
Diatomeas , Microalgas , Microbiota , Aguas Residuales , Biodegradación Ambiental , Agua/análisis , Fósforo/análisis , Bacterias/genética , Bacterias/metabolismo , Industria de Alimentos , Nutrientes/análisis , Biomasa , Microalgas/metabolismo , Nitrógeno/metabolismo
4.
Phytother Res ; 38(4): 1863-1881, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38358766

RESUMEN

Forsythia suspensa tea is a popular traditional Chinese medicine decoction for its healthy and therapeutic benefits. However, its effects in bone metabolism were not clear. In recent study, we uncovered anti-osteoclastogenesis property of Phillygenin (Phi), a compound abundant in Forsythia suspensa leaves, and aimed to investigate the effect and mechanism of Phi on bone metabolism in vivo and in vitro. Lipopolysaccharides-induced murine calvaria osteolysis and ovariectomy-induced bone loss animal models were used to identify the bone-protective effect of Phi in vivo and micro-CT, pQCT, and TRAP staining were applied. We used CCK8, TUNEL, BrdU, and TRAP staining to evaluate the efficacy of Phi on the proliferation and formation of OCs in primary mBMMs. RNA sequence, activity-based protein profiling, molecular docking, G-LISA, and WB were used to inspect the target and underlying mechanism of Phi's actions in mBMMs. We found Phi significantly inhibited bone resorption in vivo and inhibited mBMMs osteoclastogenesis in vitro. Ras homolog gene family member A (RhoA) was identified as the direct target of Phi. It counteracted the effects of RhoA activator and acted as a RhoA inhibitor. By targeting RhoA, Phi modulated Rho-associated coiled-coil containing protein kinase 1 (ROCK1) activity and regulated its downstream NF-κB/NFATc1/c-fos pathway. Furthermore, Phi depressed the disassembling of F-actin ring through cofilin and myosin1a. Our findings provided Phi as a potential option for treating bone loss diseases by targeting RhoA and highlighted the importance of F. suspensa as a preventive approach in bone disorders.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Lignanos , Osteólisis , Animales , Femenino , Ratones , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/prevención & control , Diferenciación Celular , Lignanos/farmacología , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/farmacología , Osteoclastos , Osteogénesis , Osteólisis/inducido químicamente
5.
J Stroke Cerebrovasc Dis ; : 107636, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38346661

RESUMEN

PURPOSE: To explore possible mechanism(s) underlying beneficial effects of acupuncture treatment for alleviating focal cerebral infarction-induced neuronal injury, mitochondrial biogenesis, energy metabolism, oxidative stress and dendrite regeneration were evaluated in rats with experimentally induced cerebral ischemia and dendron reperfusion. MATERIALS AND METHODS: Rats were randomly assigned to three groups (sham-operated, operated group without acupuncture, operated group with acupuncture). RT-PCR and Western blotting were used to assess variations of hippocampal cell mitochondrial DNA (mtDNA) copy number and mRNA and protein expression levels associated with key mitochondrial biogenesis proteins, namely peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), nuclear respiration factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). To evaluate mitochondrial oxidative phosphorylation and respiratory function in ischemic tissues, oxidative phosphorylation protein complex expression levels were assessed via Western blot analysis, mitochondrial membrane potential (MMP) was assessed via confocal microscopy and flow cytometry and adenosine triphosphate (ATP) concentration was assessed using an enzymatic fluorescence-based assay. Immunofluorescence staining was used to evaluate the expression of the neuronal dendron formation marker-Microtubule Associated Protein 2 (MAP2). Additionally, oxidative stress levels were assessed based on superoxide dismutase (SOD) activity, lipid oxidation levels (malondialdehyde, MDA) and glutathione (GSH) levels. Meanwhile, 2,3,5-triphenyltetrazolium chloride (TTC) staining, Nissl staining, transmission electron microscopy observation and neuro behavioral status were used to determine cerebral infarction volume and extent of brain injury. RESULTS: Acupuncture treatment effectively stimulated mRNA-level and protein-level expression associated with PGC-1α, NRF-1 and TFAM and increased levels of electron transport chain complexes I, IV and V, thereby increasing the ATP concentration, maintaining mitochondrial membrane potential, and promoting dendron regeneration levels. Meanwhile, in hippocampal neurons SOD activity and the glutathione/glutathione disulfide (GSH/GSSG) ratio increased and MDA level decreased. CONCLUSION: Acupuncture treatment after ischemic injury promoted mitochondrial biogenesis, as reflected by beneficially increased mitochondrial oxidative phosphorylation complex protein levels and brain tissue energy supply, while preventing oxidative stress injury. These results should guide future explorations to elucidate acupuncture-based mechanisms for alleviating neuronal injury triggered by acute cerebral ischemia.

6.
Heliyon ; 10(1): e23742, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38205280

RESUMEN

Background: Ischemic stroke (IS) is a leading cause of long-term disability and even mortality, threatening people's lives. Yinao Fujian (YNFJ) formula is a Traditional Chinese Medicine formula that has been widely used to treat patients with IS. However, the molecular mechanism of YNFJ for the treatment of IS is still elusive. Our study aimed to explore the potential protective effect and the underlying mechanisms of YNFJ on IS using a network pharmacology approach coupled with experimental validation. Materials and methods: Effective compounds of YNFJ were collected from BATMAN-TCM and TCMSP databases, while IS targets were obtained from GeneCards, OMIM, TTD and DrugBank databases. The protein-protein interaction (PPI) network was constructed to further screen the hub targets of YNFJ in IS treatment. GO and KEGG enrichment analyses were used to identify the critical biological processes and signaling pathways of YNFJ for IS. Moreover, Nissl staining, HE, TTC staining and Tunel staining were used in the MCAO model to prove the neuroprotective effect of YNFJ. Oxidative damage, inflammatory factor release and related pathways were tested in MCAO rat model and hypoxia-induced BV2 cell model, respectively. Results: We found that YNFJ treatment significantly alleviated MCAO-induced nerve damage and apoptosis. Then, network pharmacology screening combined with literature research revealed IL6, TNF, PTGS2, NFKBIA and NFE2L2 as the critical targets in a PPI network. Moreover, the top 20 signaling pathways and biological processes associated with the protective effects of YNFJ on IS were enriched through GO and KEGG analyses. Further analysis indicated that NF-κB and Nrf2/HO-1 signaling pathways might be highly involved in the protective effects of YNFJ on IS. Finally, in vitro and in vivo experiments confirmed that YNFJ inhibited the release of inflammatory factors (IL-6 and TNF-α) and MDA content, and increased the activity of SOD. In terms of the mechanism, YNFJ inhibited the release of inflammatory factors by suppressing the NF-κB pathway and decreased the expression of iNOS and COX-2 to protect microglia from inflammation damage. In addition, YNFJ initiated the dissociation of Keap-1 and Nrf2, and activated the downstream protein HO-1, NQO1, thus decreasing oxidative stress. Conclusion: Taken together, the findings in our research showed that the protective effects of YNFJ on IS were mainly achieved by regulating the NF-κB and Nrf2/HO-1 signaling pathways to inhibit oxidative stress damage and inflammatory damage of microglia.

7.
Chin J Nat Med ; 22(1): 4-14, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38278558

RESUMEN

Polysaccharides, predominantly extracted from traditional Chinese medicinal herbs such as Lycium barbarum, Angelica sinensis, Astragalus membranaceus, Dendrobium officinale, Ganoderma lucidum, and Poria cocos, represent principal bioactive constituents extensively utilized in Chinese medicine. These compounds have demonstrated significant anti-inflammatory capabilities, especially anti-liver injury activities, while exhibiting minimal adverse effects. This review summarized recent studies to elucidate the hepatoprotective efficacy and underlying molecular mechanisms of these herbal polysaccharides. It underscored the role of these polysaccharides in regulating hepatic function, enhancing immunological responses, and improving antioxidant capacities, thus contributing to the attenuation of hepatocyte apoptosis and liver protection. Analyses of molecular pathways in these studies revealed the intricate and indispensable functions of traditional Chinese herbal polysaccharides in liver injury management. Therefore, this review provides a thorough examination of the hepatoprotective attributes and molecular mechanisms of these medicinal polysaccharides, thereby offering valuable insights for the advancement of polysaccharide-based therapeutic research and their potential clinical applications in liver disease treatment.


Asunto(s)
Medicamentos Herbarios Chinos , Hepatopatías , Humanos , Medicamentos Herbarios Chinos/farmacología , Hepatopatías/tratamiento farmacológico , Antioxidantes , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Medicina Tradicional China
8.
Phytochem Anal ; 35(1): 184-197, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37726965

RESUMEN

INTRODUCTION: Qingjin Yiqi granule (QYG) is a prescription medicine of traditional Chinese medicine which is widely used clinically for the recovery of coronavirus patients. However, there is currently limited research on the quality control of QYG. OBJECTIVE: To evaluate the quality of QYG qualitatively and quantitatively by making full use of advanced chromatography-mass spectrometry techniques. METHODS: Firstly, a multicomponent characterisation of QYG was performed by ultrahigh-performance liquid chromatography coupled with a Q Exactive™ hybrid quadrupole-Orbitrap mass spectrometry (UHPLC-Q-Orbitrap-MS) system using a rapid negative/positive switching mode. Secondly, the co-condition fingerprint analysis of constituted herbal medicines of QYG was performed to unveil active ingredients as the quality markers of QYG. Thirdly, the marker compounds in 10 batches of QYG were quantified by ultrahigh-performance liquid chromatography coupled with a Waters Xevo TQ-S triple quadrupole mass spectrometry (UPLC-QQQ-MS) system. RESULTS: A comprehensive method that combined the inclusion list and data-dependent acquisition (DDA) to achieve a systematic characterisation of QYG was established by UHPLC-Q-Orbitrap-MS. After analysis based on Compound Discoverer software and Global Natural Products Social (GNPS) platform, a total of 332 compounds were detected. Eleven Q-markers were determined for the quality evaluation of QYG by comparison with the fingerprint of nine constituted herbal medicines. An adjusted multiple reaction monitoring (MRM) quantification method was further established to simultaneously determine the 11 Q-markers for holistic quality evaluation of QYG. CONCLUSION: This is the first study to report comprehensive multicomponent characterisation, identification, and quality assessment of QYG, which could be used for effective guarantee of the quality of QYG.


Asunto(s)
Medicamentos Herbarios Chinos , Extractos Vegetales , Humanos , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Control de Calidad , Cromatografía Liquida , Medicamentos Herbarios Chinos/química
9.
Fitoterapia ; 172: 105730, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939738

RESUMEN

Diabetic gastroparesis (DGP) is a common complication of type 2 diabetes mellitus (T2DM). Alpinia officinarum Hance (AOH) is one of the most commonly used both as a food and folk medicines, which is rich in diarylheptanoids and flavonoids. The gastroprotection and hypoglycemic effect make AOH has great potential in developing of anti-DGP complementary medicine. However, the molecular mechanisms of AOH that act against DGP are yet to be elucidated. In this study, we evaluated the therapeutic effects, the potential molecular mechanism, and the changes of gut microbiota of AOH in DGP. The 5 components of the AOH were analyzed, and the potential signaling pathway of AOH improving DGP was predicted by molecular docking. Subsequently, DGP rat model was constructed using high-fat-irregular-diet, AOH intervention significantly reduced blood glucose levels, increased gastrointestinal propulsion rate, and improved gastric histological morphology in DGP rats. Meanwhile, AOH has been shown to regulate the SCF/c-kit signaling pathway and rebalance the gut microbiota, which may be closely related to its role in improving DGP. Taken together, AOH may play a protective role on DGP through multiple mechanisms, which might pave the road for development and utilization of AOH.


Asunto(s)
Alpinia , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Gastroparesia , Ratas , Animales , Gastroparesia/tratamiento farmacológico , Gastroparesia/etiología , Gastroparesia/metabolismo , Ratas Sprague-Dawley , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Estructura Molecular , Transducción de Señal
10.
J Clin Nurs ; 33(4): 1562-1570, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38131358

RESUMEN

OBJECTIVES: The aims of this study were to (i) compare the prevalence of multidimensional frailty in middle-aged and older people with stroke and to (ii) explore the relationship between multidimensional frailty and quality of life (QoL) in this patient population. BACKGROUND: In recent years, stroke patients have become increasingly younger. As an important risk factor for stroke patients, frailty has gradually drawn research attention because of its multidimensional nature. DESIGN: This study used a cross-sectional design. METHODS: The study included 234 stroke patients aged 45 and older. Multidimensional frailty was defined as a holistic condition in which a person experiences losses in one or more domains of human functioning (physical, psychological and social) based on the Tilburg Frailty Indicator, and QoL was based on the short version of the Stroke-Specific Quality of Life Scale. Hierarchical regression was used to analyse the correlation factors of QoL. STROBE checklist guides the reporting of the manuscript. RESULTS: A total of 128 (54.7%) participants had multidimensional frailty, 48 (44.5%) were middle aged and 80 (63.5%) were older adults. The overall QoL mean score of the participants was 47.86 ± 9.04. Multidimensional frailty was negatively correlated with QoL. Hierarchical regression analysis showed that multidimensional frailty could independently explain 14.6% of the variation in QoL in stroke patients. CONCLUSIONS: Multidimensional frailty was prevalent in middle-aged and older people with stroke, and it was a significant factor associated with QoL in stroke patients. RELEVANCE TO CLINICAL PRACTICE: This study emphasises the importance of the early identification of multidimensional frailty. And targeted interventions should be studied to prevent the occurrence of multidimensional frailty and thereby improve the QoL of patients. PATIENT OR PUBLIC CONTRIBUTION/S: There are no patient or public contributions to this study.


Asunto(s)
Fragilidad , Accidente Cerebrovascular , Anciano , Persona de Mediana Edad , Humanos , Fragilidad/psicología , Calidad de Vida/psicología , Anciano Frágil/psicología , Estudios Transversales , Evaluación Geriátrica/métodos
11.
Molecules ; 28(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067490

RESUMEN

N-glycanase 1 (NGLY1) is an essential enzyme involved in the deglycosylation of misfolded glycoproteins through the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, which could hydrolyze N-glycan from N-glycoprotein or N-glycopeptide in the cytosol. Recent studies indicated that NGLY1 inhibition is a potential novel drug target for antiviral therapy. In this study, structure-based virtual analysis was applied to screen candidate NGLY1 inhibitors from 2960 natural compounds. Three natural compounds, Poliumoside, Soyasaponin Bb, and Saikosaponin B2 showed significantly inhibitory activity of NGLY1, isolated from traditional heat-clearing and detoxifying Chinese herbs. Furthermore, the core structural motif of the three NGLY1 inhibitors was a disaccharide structure with glucose and rhamnose, which might exert its action by binding to important active sites of NGLY1, such as Lys238 and Trp244. In traditional Chinese medicine, many compounds containing this disaccharide structure probably targeted NGLY1. This study unveiled the leading compound of NGLY1 inhibitors with its core structure, which could guide future drug development.


Asunto(s)
Glucosa , Ramnosa , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Glicoproteínas/metabolismo , Citosol/metabolismo
12.
Front Med ; 17(6): 1014-1029, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38157191

RESUMEN

Traditional Chinese medicine (TCM) has played an important role in the prevention and treatment of Coronavirus disease 2019 (COVID-19) epidemic in China. The integration of Chinese and Western medicine is an important feature of Chinese COVID-19 prevention and treatment. According to a series of evidence-based studies, TCM can reduce the infection rate of severe acute respiratory syndrome coronavirus 2 in high-risk groups. For patients with mild and moderate forms of COVID-19, TCM can relieve the related signs and symptoms, shorten the period of nucleic-acid negative conversion, and reduce conversion rate to the severe form of the disease. For COVID-19 patients with severe and critical illnesses, TCM can improve inflammatory indicators and blood oxygen saturation, shorten the hospital stay, and reduce the mortality rate. During recovery, TCM can improve patients' symptoms, promote organ function recovery, boost the quality of patients' life, and reduce the nucleic-acid repositive conversion rate. A series of mechanism research studies revealed that capability of TCM to treat COVID-19 through antiviral and anti-inflammatory effects, immune regulation, and protection of organ function via a multicomponent, multitarget, and multipathway approach.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Epidemias , Humanos , Medicina Tradicional China , Medicamentos Herbarios Chinos/uso terapéutico , SARS-CoV-2
13.
Front Biosci (Landmark Ed) ; 28(8): 164, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37664921

RESUMEN

BACKGROUND: Alpinia officinarum Hance (AOH) has a long history in China as a Chinese medicine and exerts the pharmacological effects of antidiabetic and gastrointestinal protection. In traditional Chinese medicine theory, AOH is often combined with other Chinese medicines for the treatment of diabetic gastroparesis (DGP). However, the molecular mechanisms, potential targets, and bioactive ingredients of AOH that act against DGP are yet to be elucidated. In this study, network pharmacology, molecular docking, and experimental study were used to predict the therapeutic effects and the potential molecular mechanism of AOH in DGP. METHODS: Network pharmacology analysis was performed to acquire information on the active chemical ingredients, DGP-related target proteins in AOH, and potential signaling pathway. In addition, molecular docking approach was used to simulate the binding of drugs and targets. Finally, DGP-mice model was used for experimental verification in vivo. Results: Through the network pharmacological research, AKT1 was found to be the core protein in AOH for the treatment of DGP and was mainly involved in the PI3K-AKT signaling pathway. Additionally, the interactions between bioactive compounds and target proteins (PIK3CA and AKT1) were analyzed using molecular docking, which verified the results of network pharmacology. Further in vivo studies indicated that AOH could reduce fasting blood glucose levels, improve gastric emptying rate, and ameliorate biochemical indicators in DGP mice. Moreover, AOH could increase the expressions and phosphorylation levels of PI3K and AKT in the stomach to regulate oxidative stress. CONCLUSIONS: The study has shown that AOH may play a protective role on DGP through mediation of the PI3K-AKT signaling pathway to regulate oxidative stress.


Asunto(s)
Alpinia , Diabetes Mellitus , Gastroparesia , Animales , Ratones , Gastroparesia/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt
14.
BMC Genomics ; 24(1): 538, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697255

RESUMEN

Rhodophyta are among the closest known relatives of green plants. Studying the codons of their genomes can help us understand the codon usage pattern and characteristics of the ancestor of green plants. By studying the codon usage pattern of all available red algae, it was found that although there are some differences among species, high-bias genes in most red algae prefer codons ending with GC. Correlation analysis, Nc-GC3s plots, parity rule 2 plots, neutrality plot analysis, differential protein region analysis and comparison of the nucleotide content of introns and flanking sequences showed that the bias phenomenon is likely to be influenced by local mutation pressure and natural selection, the latter of which is the dominant factor in terms of translation accuracy and efficiency. It is worth noting that selection on translation accuracy could even be detected in the low-bias genes of individual species. In addition, we identified 15 common optimal codons in seven red algae except for G. sulphuraria for the first time, most of which were found to be complementary and bound to the tRNA genes with the highest copy number. Interestingly, tRNA modification was found for the highly degenerate amino acids of all multicellular red algae and individual unicellular red algae, which indicates that highly biased genes tend to use modified tRNA in translation. Our research not only lays a foundation for exploring the characteristics of codon usage of the red algae as green plant ancestors, but will also facilitate the design and performance of transgenic work in some economic red algae in the future.


Asunto(s)
Uso de Codones , Magnoliopsida , Femenino , Embarazo , Humanos , Aminoácidos , Intrones , Mutación
15.
Mol Ecol ; 32(18): 4999-5012, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37525516

RESUMEN

Genomic structural variations (SVs) are widespread in plant and animal genomes and play important roles in phenotypic novelty and species adaptation. Frequent whole genome duplications followed by (re)diploidizations have resulted in high diversity of genome architecture among extant species. In this study, we identified abundant genomic SVs in the Panax genus that are hypothesized to have occurred through during the repeated polyploidizations/(re)diploidizations. Our genome-wide comparisons demonstrated that although these polyploidization-derived SVs have evolved at distinct evolutionary stages, a large number of SV-intersecting genes showed enrichment in functionally important pathways related to secondary metabolites, photosynthesis and basic cellular activities. In line with these observations, our metabolic analyses of these Panax species revealed high diversity of primary and secondary metabolites both at the tissue and interspecific levels. In particular, genomic SVs identified at ginsenoside biosynthesis genes, including copy number variation and large fragment deletion, appear to have played important roles in the evolution and diversification of ginsenosides. A further herbivore deterrence experiment demonstrated that, as major triterpenoidal saponins found exclusively in Panax, ginsenosides provide protection against insect herbivores. Our study provides new insights on how polyploidization-derived SVs have contributed to phenotypic novelty and plant adaptation.


Asunto(s)
Ginsenósidos , Panax , Saponinas , Ginsenósidos/análisis , Ginsenósidos/química , Ginsenósidos/metabolismo , Panax/genética , Panax/química , Panax/metabolismo , Variaciones en el Número de Copia de ADN , Saponinas/química , Saponinas/genética , Saponinas/metabolismo , Adaptación Fisiológica
16.
Am J Chin Med ; 51(7): 1711-1749, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37646143

RESUMEN

Diabetes mellitus (DM) has become a surge burden worldwide owing to its high prevalence and range of associated complications such as coronary artery disease, blindness, stroke, and renal failure. Accordingly, the treatment and management of DM have become a research hotspot. Mulberry leaves (Morus alba L.) have been used in Traditional Chinese Medicine for a long time, with the first record of its use published in Shennong Bencao Jing (Shennong's Classic of Materia Medica). Mulberry leaves (MLs) are considered highly valuable medicinal food homologs that contain polysaccharides, flavonoids, alkaloids, and other bioactive substances. Modern pharmacological studies have shown that MLs have multiple bioactive effects, including hypolipidemic, hypoglycemic, antioxidation, and anti-inflammatory properties, with the ability to protect islet [Formula: see text]-cells, alleviate insulin resistance, and regulate intestinal flora. However, the pharmacological mechanisms of MLs in DM have not been fully elucidated. In this review, we summarize the botanical characterization, traditional use, chemical constituents, pharmacokinetics, and toxicology of MLs, and highlight the mechanisms involved in treating DM and its complications. This review can provide a valuable reference for the further development and utilization of MLs in the prevention and treatment of DM.


Asunto(s)
Diabetes Mellitus , Morus , Humanos , Morus/química , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hojas de la Planta/química
17.
J Mater Chem B ; 11(30): 7069-7093, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37401343

RESUMEN

Bacterial infections pose a significant threat to human health and a heavy burden on the global healthcare system. Antibiotics are the primary treatment, but they can lead to bacterial resistance and adverse side effects. Two-dimensional (2D) nanomaterials such as graphene, MoS2, and MXene have emerged as novel antibacterial agents due to their potential to circumvent bacterial resistance. Among the 2D nanomaterials, black phosphorus nanosheets (BPNs) have attracted great research interest due to their excellent biocompatibility. BPNs possess unique properties, such as a high specific surface area, tunable bandgap, and easy surface functionalization, enabling them to combat bacteria through physical disruption of bacterial membranes, photothermal and photodynamic therapies. However, the low preparation efficiency and inevitable oxidative degradation of BPNs have limited their wide application. This review provides a comprehensive overview of recent advances in antibacterial research on BPNs, encompassing their preparation methods, structural and physicochemical properties, antibacterial mechanisms, and potential applications. By addressing the challenges and prospects of using BPNs as an alternative to antibiotics, this review provides valuable insights and guidance for utilizing BPNs in shaping the future of antibacterial therapy.


Asunto(s)
Infecciones Bacterianas , Nanoestructuras , Humanos , Fósforo/química , Nanoestructuras/química , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Antibacterianos/química
18.
Neurochem Res ; 48(10): 3146-3159, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37347359

RESUMEN

Acupuncture can alleviate depression-like behaviors. However, the neural mechanisms behind the anti-depressive effect remain unknown. Perineuronal net (PNN) abnormalities have been reported in multiple psychiatric disorders. This study investigated the modulation and neural mechanism of PNNs in the anti-depressant process of electroacupuncture (EA) at Baihui (GV20) and Yintang (GV29) points. A rat depression model was induced by chronic unpredicted mild stress (CUMS). The results revealed that CUMS, applied for four weeks, specifically reduces PNNs around parvalbumin (PV). In addition, EA and fluoxetine treatments reverse the decrease in PNNs+ cell density and the ratio of PV and PNN double-positive cells to PV+ neurons in the medial prefrontal cortex (mPFC) after CUMS. Furthermore, EA treatment can reverse the decrease in the protein expression of PNN components (aggrecan and brevican) in the mPFC caused by stress. After EA treatment, the decreased expression of GAD67, GLuA1, and PSD95 in the mPFC induced by CUMS for four weeks was also reversed. PNN degradation in mPFC brain areas potentially interferes with the anti-depressant benefits of EA in rats with depression induced by CUMS. EA treatment did not increase PNNs+ cell density and the ratio of PV and PNN double-positive cells to PV+ neurons after PNNs degradation in the mPFC brain region of rats. This finding indicated that the mechanism of acupuncture's anti-depressant effect may be based on reversing the CUMS-induced decline in PNN expression, the functional impairment of γ-aminobutyric acid (GABA) neurons, and the regulation of excitatory synaptic proteins expression.


Asunto(s)
Depresión , Electroacupuntura , Ratas , Animales , Depresión/terapia , Neuronas/metabolismo , Matriz Extracelular/metabolismo , Corteza Cerebral/metabolismo , Parvalbúminas/metabolismo
19.
Sci Rep ; 13(1): 10119, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344501

RESUMEN

Cerebral ischemic stroke is a high-risk disease and imposes heavy burdens on patients in china. Acupuncture has been used for thousands of years to treat motor dysfunction, cognitive disorder and language barrier caused by cerebral ischemic stroke. Acupoint lines, vertex middle line and anterior oblique line of vertex temple, are always employed to treat cerebral ischemic stroke. However, the mechanism of the two acupoint lines in relieving cerebral ischemic stroke needs further exploration. In the present study, scalp acupuncture treatment alleviated the motor dysfunction, brain damage, and cell death induced by middle cerebral artery occlusion (MCAO) in rats. Proteomics analysis and ultrastructure observation indicated that endoplasmic reticulum and lysosomes might involve in the mechanism of the scalp acupuncture treatment in suppressing MCAO-triggered neural deficits. Effect of the scalp acupuncture treatment on ER stress was then investigated and found that the activation of ER stress mediators, including PERK, IRE1, and ATF6, was downregulated after the scalp acupuncture treatment. Co-localisation analysis of KDEL and CD63 showed that the engulfment of ER fragments by lysosomes was accelerated by the scalp acupuncture treatment. Moreover, expression of pro-apoptotic protein CHOP, phosphorylated-JNK, cleaved capases-3 and -9 also decreased after the scalp acupuncture. In conclusion, the present study showed that scalp acupuncture of vertex middle line and anterior oblique line of vertex temple may alleviate cerebral ischemic stroke by inhibiting ER stress-accelerated apoptosis.


Asunto(s)
Terapia por Acupuntura , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratas , Animales , Cuero Cabelludo/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/metabolismo , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/metabolismo , Estrés del Retículo Endoplásmico , Autofagia
20.
Molecules ; 28(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37241720

RESUMEN

In this study, the flavor compounds of Camellia seed oils obtained by four processes were characterized by headspace solid phase microextraction/gas chromatography/mass spectrometry (HS-SPME/GC/MS). A variety of about 76 volatile flavor compounds were identified from all the oil samples. Of the four processing processes, the pressing process can retain a lot of volatile components. Among these, compounds nonanal and 2-undecenal were predominantly in the majority of the samples. Meanwhile, other compounds such as octyl ester formic acid, octanal and 2-nonenal (E), 3-acetyldihydro 2(3H)-furanone, (E)-2-decenal, dihydro-5-penty 2(3H)-furanone, nonanoic acid, and dodecane were also among the most consistently found compounds among the oil samples analyzed. The principal component analysis carried out to categorize the data produced seven clusters of the total oil samples based on the number of flavor compounds obtained in each sample. This categorization would lead to understanding the components which highly contributed to the characteristic volatile flavor and build up the flavor profile of Camellia seed oil.


Asunto(s)
Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Microextracción en Fase Sólida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Aceites de Plantas , Semillas/química , Análisis de Componente Principal , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA