Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Pharmacother ; 165: 115277, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544285

RESUMEN

Paeonol (PAE) is a natural phenolic monomer isolated from the root bark of Paeonia suffruticosa that has been widely used in the clinical treatment of some inflammatory-related diseases and cardiovascular diseases. Much preclinical evidence has demonstrated that PAE not only exhibits a broad spectrum of anticancer effects by inhibiting cell proliferation, invasion and migration and inducing cell apoptosis and cycle arrest through multiple molecular pathways, but also shows excellent performance in improving cancer drug sensitivity, reversing chemoresistance and reducing the toxic side effects of anticancer drugs. However, studies indicate that PAE has the characteristics of poor stability, low bioavailability and short half-life, which makes the effective dose of PAE in many cancers usually high and greatly limits its clinical translation. Fortunately, nanomaterials and derivatives are being developed to ameliorate PAE's shortcomings. This review aims to systematically cover the anticancer advances of PAE in pharmacology, pharmacokinetics, nano delivery systems and derivatives, to provide researchers with the latest and comprehensive information, and to point out the limitations of current studies and areas that need to be strengthened in future studies. We believe this work will be beneficial for further exploration and repurposing of this natural compound as a new clinical anticancer drug.


Asunto(s)
Antineoplásicos , Neoplasias , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Acetofenonas/farmacología , Acetofenonas/uso terapéutico , Neoplasias/tratamiento farmacológico
2.
Micromachines (Basel) ; 14(4)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37421078

RESUMEN

AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs) have great application prospects in sterilization, UV phototherapy, biological monitoring and other aspects. Due to their advantages of energy conservation, environmental protection and easy miniaturization realization, they have garnered much interest and been widely researched. However, compared with InGaN-based blue LEDs, the efficiency of AlGaN-based DUV LEDs is still very low. This paper first introduces the research background of DUV LEDs. Then, various methods to improve the efficiency of DUV LED devices are summarized from three aspects: internal quantum efficiency (IQE), light extraction efficiency (LEE) and wall-plug efficiency (WPE). Finally, the future development of efficient AlGaN-based DUV LEDs is proposed.

3.
Front Nutr ; 10: 1129548, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153921

RESUMEN

Introduction: Bioactive peptides based on foodstuffs are of particular interest as carriers for calcium delivery due to their safety and high activity. The phosphorylated peptide has been shown to enhance calcium absorption and bone formation. Method: A novel complex of peptide phosphorylation modification derived from soybean protein was introduced, and the mechanism, stability, and osteogenic differentiation bioactivity of the peptide with or without calcium were studied. Result: The calcium-binding capacity of phosphorylated soy peptide (SPP) reached 50.24 ± 0.20 mg/g. The result of computer stimulation and vibration spectrum showed that SPP could chelate with calcium by the phosphoric acid group, carboxyl oxygen of C-terminal Glu, Asp, and Arg, and phosphoric acid group of Ser on the SPP at a stoichiometric ratio of 1:1, resulting in the formation of the complex of ligand and peptide. Thermal stability showed that chelation enhanced peptide stability compared with SPP alone. Additionally, in vitro results showed that SPP-Ca could facilitate osteogenic proliferation and differentiation ability. Discussion: SPP may function as a promising alternative to current therapeutic agents for bone loss.

4.
Phytomedicine ; 112: 154687, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36804756

RESUMEN

BACKGROUND: Hepatocellular carcinoma has high ability of vascular invasion and metastasis. Vasculogenic mimicry (VM) is closely related to the metastasis and recurrence of hepatocellular carcinoma (HCC). According to previous research, Chloranthus henryi has anti-tumor effect, but its molecular mechanism in the treatment of HCC has not yet been stated. PURPOSE: In our study, we aimed to investigate the effect of the extract of Chloranthus henryi in HCC and its target and molecular mechanism. We hoped to explore potential drugs for HCC treatment. STUDY DESIGN/METHODS: In this study, we isolated a chalcone compound from Chloranthus henryi, compound 4, identified as flavokawain A (FKA). We determined the anti-HCC effect of FKA by MTT and identified the target of FKA by molecular docking and CETSA. Hepatoma cells proliferation, migration, invasion, and VM formation were examined using EDU, wound healing, transwell, vasculogenic mimicry, and IF. WB, RT-PCR, and cell transfection were used to explore the mechanism of FKA on hepatoma cells. Tissue section staining is mainly used to demonstrate the effect of FKA on HCC in vivo. RESULTS: We confirmed that FKA can directly interact with CXCL12 and HCC proliferation, migration, invasion, and VM formation were all inhibited through reversing the EMT progress in vitro and in vivo through the PI3K/Akt/NF-κB signaling pathway. Additionally, by overexpressing and knocking down CXCL12, we got the same results. CONCLUSION: FKA attenuated proliferation, invasion and metastatic and reversed EMT in HCC via PI3K/Akt/HIF-1α/NF-κB/Twist1 pathway by targeting CXCL12. This study proposed that FKA may be a candidate drug and prospective strategy for HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Proteínas Proto-Oncogénicas c-akt , FN-kappa B , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Movimiento Celular , Transición Epitelial-Mesenquimal , Quimiocina CXCL12
5.
Int J Biol Macromol ; 222(Pt B): 2006-2016, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208812

RESUMEN

The separation and enrichment of uranium from various resources such as seawater is of great significance to the sustainable development of nuclear energy. Therefore, there is an urgent need to develop an adsorbent with low cost and easy availability, simple preparation process, and environment friendly. In this work, we used inexpensive natural polymer material (sodium alginate) and natural adsorbents (ß-cyclodextrin and diatomite) to prepare a novel biosorbent ß-cyclodextrin/sodium alginate/diatomite (CSD) hydrogel beads for uranium adsorption by a simple method. The results of FTIR, XRD, SEM, EDX and XPS characterization proved that the CSD were prepared. Static adsorption experiments showed that pH, contact time, initial concentration of U(VI) and temperature has significant impact on the adsorption capacity of CSD. Adsorption fitted the pseudo-second-order kinetic model and Langmuir model and the adsorption mechanism is chemical adsorption. In the presence of other metal ions (Cu2+, Mg2+, Ca2+, Na+, K+), CSD has obvious selectivity for uranium(VI) adsorption. In addition, the elution and reusability studies show that CSD has excellent reusability. Overall, CSD is an inexpensive, green preparation, efficient, and environment friendly biosorbent with obvious selectivity for U(VI). It has potential application in U(VI) enrichment from seawater or salt lake water.


Asunto(s)
Uranio , beta-Ciclodextrinas , Uranio/química , Adsorción , Alginatos/química , Concentración de Iones de Hidrógeno , Cinética , Agua , Iones
6.
Fitoterapia ; 159: 105175, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35296435

RESUMEN

Four new isoquinoline alkaloids including a benzophenanthridine alkaloid (1), a morphine derivative (2), a narceine-type alkaloid (3) and a simple isoquinoline alkaloid (4), a new amide alkaloid (5) and a new phthalic acid derivative (6), together with eleven known alkaloids (7-17) were obtained from the whole herbs extract of Corydalis bungeana Turcz. Their structures and absolute configurations were elucidated by extensive spectroscopic data analysis including HRESIMS, NMR and electronic circular dichroism (ECD) and ECD calculation. Compounds 1-17 were evaluated for dopamine D2 receptor activity in CHO-D2 cells. Among them, 16 showed the highest antagonistic activity on the D2 receptor with an IC50 value of 2.04 ± 0.01 µM. Compounds 14 and 15 exhibited moderate antagonism with IC50 values of 13.66 ± 2.28 and 31.72 ± 2.52 µM, respectively.


Asunto(s)
Alcaloides , Corydalis , Alcaloides/química , Alcaloides/farmacología , Amidas , Corydalis/química , Antagonistas de los Receptores de Dopamina D2 , Isoquinolinas/química , Isoquinolinas/farmacología , Estructura Molecular , Receptores de Dopamina D2
7.
J Agric Food Chem ; 67(35): 9805-9811, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31407895

RESUMEN

Stachydrine (STA) is a constituent of citrus fruits and Leonurus heterophyllus Sweet. In the present study, we established that STA caused acute endothelium-dependent relaxation. The vascular action of STA was mediated by nitric oxide (NO) via cyclic guanosine monophosphate. Mechanistically, STA activated AMP-activated protein kinase (AMPK), protein kinase B/Akt, and endothelial NO synthase (eNOS) in vascular endothelial cells (ECs). AMPK inhibition by compound C blocked STA-induced Akt/eNOS phosphorylation, suggesting that AMPK is the upstream of Akt and eNOS. Inhibition of Akt by MK2206 blocked STA-stimulated eNOS phosphorylation without altering AMPK phosphorylation. Furthermore, we showed that STA activated AMPK via the induction of liver kinase B1 phosphorylation. These results indicated that STA can induce eNOS phosphorylation and vasorelaxation by regulating the interplay between AMPK and Akt pathways in ECs. These findings further highlighted the potential of STA as a nutritional factor in the beneficial effects of fruit intake in preventing the endothelial dysfunction-related metabolic cardiovascular diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aorta Torácica/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Prolina/análogos & derivados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vasodilatadores/farmacología , Proteínas Quinasas Activadas por AMP/genética , Animales , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatología , Bovinos , Citrus/química , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Técnicas In Vitro , Leonurus/química , Masculino , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación/efectos de los fármacos , Prolina/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Ratas Sprague-Dawley , Vasodilatación/efectos de los fármacos
8.
Sci Rep ; 7: 40237, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067284

RESUMEN

Oleanolic acid (3ß-hydroxyolean-12-en-28-oic acid, OA) is a pentacyclic triterpenes widely distributed in food, medicinal plants and nutritional supplements. OA exhibits various pharmacological properties, such as hepatoprotective and anti-tumor effects. In this study, we analyzed the effect of OA on endothelial dysfunction induced by high glucose in human vascular endothelial cells (ECs). Western blotting showed that OA attenuated high glucose-reduced nitric production oxide (NO) as well as Akt-Ser473 and eNOS-Ser1177 phosphorylation in cultured human umbilical vein ECs (HUVECs). Next, luciferase reporter assay showed that OA activated peroxisome proliferators-activated receptor δ (PPARδ) activity. Quantitative reverse transcriptase PCR (qRT-PCR) demonstrated that OA increased the expressions of PPARδ target genes (PDK4, ADRP and ANGPTL4) in ECs. Meanwhile, the induced expressions of PDK4, ADRP and ANGPTL4 by OA were inhibited by GSK0660, a specific antagonist of PPARδ. In addition, inhibition of PPARδ abolished OA-induced the Akt-Ser473 and eNOS-Ser1177 phosphorylation, and NO production. Finally, by using Multi Myograph System, we showed that OA prevented high glucose-impaired vasodilation. This protective effect on vasodilation was inhibited in aortic rings pretreated with GSK0660. Collectively, we demonstrated that OA improved high glucose-impaired endothelial function via a PPARδ-mediated mechanism and through eNOS/Akt/NO pathway.


Asunto(s)
Glucosa/toxicidad , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ácido Oleanólico/farmacología , PPAR delta/metabolismo , Transducción de Señal , Células Cultivadas , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vasodilatación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA