Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 232: 116348, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290621

RESUMEN

A novel functional biochar (BC) was prepared from industrial waste red mud (RM) and low-cost walnut shell by one facile-step pyrolysis method to adsorb phosphorus (P) in wastewater. The preparation conditions for RM-BC were optimized using Response Surface Methodology. The adsorption characteristics of P were investigated in batch mode experiments, while a variety of techniques were used to characterize RM-BC composites. The impact of key minerals (hematite, quartz, and calcite) in RM on the P removal efficiency of the RM-BC composite was studied. The results showed that RM-BC composite produced at 320 °C for 58 min, with a 1:1 mass ratio of walnut shell and RM, had a maximum P sorption capacity of 15.48 mg g-1, which was more than double that of the raw BC. The removal of P from water was found to be facilitated significantly by hematite, which forms Fe-O-P bonds, undergoes surface precipitation, and exchanges ligands. This research provides evidence for the effectiveness of RM-BC in treating P in water, laying the foundation for future scaling-up trials.


Asunto(s)
Juglans , Contaminantes Químicos del Agua , Aguas Residuales , Fósforo , Carbonato de Calcio , Agua , Adsorción , Contaminantes Químicos del Agua/química
2.
Sci Total Environ ; 867: 161593, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36642275

RESUMEN

As a passivation material for heavy metals in-situ remediation, biochar (BC) has often been expected to maintain long-term adsorption performance for target pollutants. There is still lack of consensus about the impact of aging processes on biochar properties, particularly with respect to its long-term sorption performance. In this study, the changes to immobilization mechanisms as well as the speciation distribution of Cd(II) triggered by combined aging simulation (dry-wet, freeze-thaw cycle and oxidation treatment) on BC prepared under three levels of pyrolysis temperatures (300, 500 and 700 °C) were investigated. The results showed significant inhibition of aging on adsorption performance with the adsorptive capacity of BC300, BC500 and BC700 for Cd(II) decreased by 31.12 %, 50.63 % and 14.94 %, respectively. However, sequential extraction results indicated little influence of the aging process on the relative fractionation of Cd(II) speciation. The distribution of readily bioavailable, potentially bioavailable and non-bioavailable fractions of Cd(II) on BC showed only minimal changes post-aging. Overall, there was less Cd(II) sorption following aging, but the fractional availability (in relative terms) remained the same. Compared with 300 and 700 °C, the biochar prepared under 500 °C accounted the highest fraction of non-bioavailable Cd(II) (67.23 % of BC500, 59.17 % of Aged-500), and thus showed most promising for Cd(II) immobilization. This study has important practical significance for the long-term application of biochar in real environment.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , Adsorción , Carbón Orgánico , Contaminantes del Suelo/análisis , Suelo
3.
Chemosphere ; 305: 135418, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35750233

RESUMEN

Neonicotinoids, such as Imidacloprid (IMI), are frequently detected in water and wastewater, posing a threat on both the environment and the health of living things. In this work, a novel algae-bacteria biofilm reactor (ABBR) was constructed to remove IMI and conventional nutrients from municipal wastewater, aiming to explore the removal effect and advantage of ABBR. Results showed that ABBR achieved 74.9% removal of IMI under 80 µmol m-2·s-1 light, higher than photobioreactor (PBR) without biofilm (61.2%) or ABBR under 40 µmol m-2·s-1 light (48.4%) after 16 days of operation. Moreover, it also showed that ABBR allowed a marked improvement on the removal of total dissolved nitrogen (TDN), total dissolved phosphorus (TDP) and soluble chemical oxygen demand (sCOD). ABBR showed different IMI removal efficiencies and bacterial communities under different light conditions, indicating that light played an important role in driving ABBR. The merits of ABBR are including (i) ABBR showed rapid pollutant removal in a short time, (ii) in ABBR, stable consortiums were formed and chlorophyll content in effluent was very low, (iii) compared with PBR, degradation products in ABBR showed lower biological toxicity. Our study highlights the benefits of ABBR on IMI removing from municipal wastewater and provides an effective and environment-friendly engineering application potential of IMI removal.


Asunto(s)
Eliminación de Residuos Líquidos , Aguas Residuales , Bacterias , Biopelículas , Reactores Biológicos , Iluminación , Neonicotinoides , Nitrocompuestos , Nitrógeno , Nutrientes , Fósforo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología
4.
Chemosphere ; 296: 134051, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35216977

RESUMEN

As an in-situ immobilization material for heavy metals, biochar can exist in the environment for thousands of years, while whether the natural aging would affect its heavy metals adsorption performance still remains unclear. Therefore, the coffee grounds biochar (CGB) was prepared under different pyrolysis temperatures (300, 500 and 700 °C) in this study, and the simulated artificial aging treatment was carried out to investigate the effects of pyrolysis temperature and aging treatment on Cd2+ and Zn2+ (both separate and combined conditions) adsorption performance of CGB. The result revealed that Fresh-CGB adsorption performance increased with increasing pyrolysis temperature, while the relationship was not so clear with Aged-CGB where adsorption performance peaked at medium pyrolysis temperature (500 °C) but reduced again as pyrolysis temperature increased to 700 °C. The changes of Aged-CGB adsorption performance for Cd2+ and Zn2+ represented the long-term performance of naturally aging biochar in environment, and a mid-range pyrolysis temperature would seem most appropriate for long-term application of biochar. The X-ray Diffraction (XRD) result revealed that the degree of graphitization of CGB increased with increasing pyrolysis temperature, which represents a stronger environmental stability as the weight loss of CGB300, CGB500 and CGB700 after aging treatment was 2.38%, 0.66%, and 0%, respectively. The EDS and FTIR results suggested that ion-exchange and complexation between CGB/Aged-CGB with Cd2+/Zn2+ played a dominant role in adsorption processes. In addition, the selectivity for Cd2+ was significantly improved after the aging treatment. This is desirable given the stronger toxicity of Cd2+ relative to Zn2+. In general, this study provides new insights into the practical application of biochar from the perspective of long-term effects.


Asunto(s)
Metales Pesados , Pirólisis , Adsorción , Cadmio , Carbón Orgánico , Café , Metales Pesados/análisis , Temperatura , Zinc
5.
Artículo en Inglés | MEDLINE | ID: mdl-32455743

RESUMEN

This study investigates how arsenic (As) uptake, accumulation, and migration responds to selenium (Se) foliar application (0-5.0 mg × kg-1). Rice varieties known to accumulate low (DOURADOAGULHA) and high (SINALOAA68) concentrations of arsenic were chosen to grow on soil with different As concentrations (20.1, 65.2, 83.9 mg × kg-1). The results showed that Se of 1.0 mg × L-1 significantly alleviated As stress on upland rice grown on the As-contaminated soil. Under light (65.2 mg × kg-1) and moderate (83.9 mg × kg-1) As concentration treatments, the biomass of upland rice was increased by 23.15% and 36.46% for DOURADOAGULHA, and 46.3% and 54.9% for SINALOAA68. However, the high Se dose (5.0 mg × kg-1) had no significant effect on biomass and heights of upland rice compared to plants where no Se was added. Se significantly decreased As contents in stems and leaves and had different effects on As transfer coefficients for the two rice varieties: when grown on soil with low and moderate As concentrations, Se could reduce the transfer coefficient from stems to leaves, but when grown on the high As soils, this was not the case. The chlorophyll content in plants grown in soil with the moderate concentration of As could be improved by 27.4%-55.3% compared with no Se treatment. Under different As stress, the Se foliar application increased the net photosynthesis, stomatal conductance, and transpiration rate, which meant that Se could enhance the photosynthesis of rice. The intercellular CO2 concentration variation implied that the stomatal or non-stomatal limitations could both occur for different rice varieties under different Se application doses. In conclusion, under moderate As stress, foliar application of Se (1.0 mg × L-1) is recommend to overcome plant damage and As accumulation.


Asunto(s)
Arsénico , Oryza , Selenio , Contaminantes del Suelo , Arsénico/farmacocinética , Cadmio , Fotosíntesis , Ácido Selenioso , Selenio/farmacología , Contaminantes del Suelo/farmacocinética
6.
Artículo en Inglés | MEDLINE | ID: mdl-32182762

RESUMEN

Heavy metal pollution in the river environment has been a source of widespread interest due to potential threats to human health and ecosystem security. Many studies have looked at heavy metal pollution in the context of single source-pathway-receptor relationships, however few have sought to understand pollution from a more wholistic multi-media perspective. To investigate potential risks in a more wholistic way, concentrations of six heavy metals (Cd, Cr, Ni, Cu, Zn and Pb) were detected in multi-media (water, sediment and riparian soil) collected from 14 sampling sites in the main stream of the Songhua River. Chemical analyses indicated that the average concentration of heavy metals in water followed: Zn > Cr > Cu > Pb > Ni > Cd, with a different trend observed in sediments and riparian soil: Zn > Cr > Ni > Pb > Cu > Cd. The potential risk was evaluated using the heavy metal pollution index (HPI), Nemerow pollution index (PN), hazard index (HI) and carcinogenic risk (CR) metrics. Results showed that all HPI values were lower than the critical level of 100 indicating that the levels of these targeted heavy metals were within drinking water safety limits. The PN indicated that both sediment (2.64) and soil (2.95) could be considered "moderately polluted", with Cd and Zn providing the most significant contributions. A human health risk assessment suggested that the non-carcinogenic risks were within acceptable levels (HI < 1), as was the cancer risk associated with dermal adsorption (CR <10-6). However, the CR associated with ingestion exposure (4.58 × 10-6) exceeded the cancer risk threshold (10-6) indicative of elevated cancer incidence in exposed populations. Health-risk estimates were primarily associated with Cd in the Songhua River. Source apportionment was informed by Pearson correlation analysis coupled with principal component analysis (PCA) which indicated that Cu was mainly derived from natural (geogenic) sources; Cr and Ni were associated with industrial emissions; Pb might be derived from agricultural and transportation sources; Zn might be from industrial, agricultural activities and transportation; while Cd is likely from industrial and agricultural emissions. The source apportionment information could provide the basis for a risk-management strategy focused on reducing Cd and Zn emissions to the riverine environment. Results from this study will provide the scientific knowledge that is needed for measuring and controlling heavy metals sources and pollution characteristics, and identifying the potential cancer risk with different exposure pathways, as well as making effective environmental management policies at catchment or regional scales.


Asunto(s)
Exposición a Riesgos Ambientales/estadística & datos numéricos , Metales Pesados , Contaminantes del Suelo , China , Ecosistema , Monitoreo del Ambiente , Humanos , Medición de Riesgo , Ríos/química , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA