RESUMEN
The beneficial microorganisms in food are diverse and complex in structure. These beneficial microorganisms can produce different and unique flavors in the process of food fermentation. The unique flavor of these fermented foods is mainly produced by different raw and auxiliary materials, fermentation technology, and the accumulation of flavor substances by dominant microorganisms during fermentation. The succession and metabolic accumulation of microbial flora significantly impacts the distinctive flavor of fermented foods. The investigation of the role of microbial flora changes in the production of flavor substances during fermentation can reveal the potential connection between microbial flora succession and the formation of key flavor compounds. This paper reviewed the evolution of microbial flora structure as food fermented and the key volatile compounds that contribute to flavor in the food system and their potential relationship. Further, it was a certain guiding significance for food industrial production.
RESUMEN
Hedysarum, a traditional Chinese herbal medicine and food with a long history of clinical application, is used to improve health conditions and treat various diseases. Hedysarum polysaccharides (HPS), flavonoids, saponins, and alkaloids, are the primary components of Hedysarum. HPS is the most important natural active ingredient of Hedysarum, which has many pharmacological effects. Currently, HPS exhibits significant promise in drug development for various ailments such as tumors, diabetes, cardiovascular diseases, Alzheimer's disease, and fibrosis. This review paper discusses the extraction, separation, and content determination techniques of HPS, along with the investigation of its chemical constituents. More importantly, we reviewed the anti-inflammatory pharmacological effects of HPS, such as inhibition of inflammatory factors and NF-κB signaling pathway; antitumor activity through apoptosis induction in tumor cells and blocking tumor cell proliferation and metastasis; antioxidant effects; regulation of various cytokines and immune cells; regulation of blood sugar levels, such as in type I and type II diabetes and in diabetic complications; improvement in symptoms of Alzheimer disease; anti-aging and anti-fibrosis properties; and improvement in cerebral ischemia-reperfusion injury. This review paper establishes the theoretical foundation for future studies on the structure, mechanism, and clinical use of HPS.
RESUMEN
The pathogenicity of Staphylococcus epidermidis is largely attributed to its exceptional ability to form biofilms. Here, we report that mupirocin, an antimicrobial agent widely used for staphylococcal decolonization and anti-infection, strongly stimulates the biofilm formation of S. epidermidis. Although the polysaccharide intercellular adhesin (PIA) production was unaffected, mupirocin significantly facilitated extracellular DNA (eDNA) release by accelerating autolysis, thereby positively triggering cell surface attachment and intercellular agglomeration during biofilm development. Mechanistically, mupirocin regulated the expression of genes encoding for the autolysin AtlE as well as the programmed cell death system CidA-LrgAB. Critically, through gene knockout, we found out that deletion of atlE, but not cidA or lrgA, abolished the enhancement of biofilm formation and eDNA release in response to mupirocin treatment, indicating that atlE is required for this effect. In Triton X-100 induced autolysis assay, mupirocin treated atlE mutant displayed a slower autolysis rate compared with the wild-type strain and complementary strain. Therefore, we concluded that subinhibitory concentrations of mupirocin enhance the biofilm formation of S. epidermidis in an atlE dependent manner. This induction effect could conceivably be responsible for some of the more unfavourable outcomes of infectious diseases.
Asunto(s)
Mupirocina , Staphylococcus epidermidis , Staphylococcus epidermidis/genética , Mupirocina/farmacología , Biopelículas , Staphylococcus/metabolismo , Virulencia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismoRESUMEN
Background: Since December 2019, SARS-CoV-2 has continued to spread rapidly around the world. The effective drugs may provide a long-term strategy to combat this virus. The main protease (Mpro) and papain-like protease (PLpro) are two important targets for the inhibition of SARS-CoV-2 virus replication and proliferation. Materials & methods: In this study, deep reinforcement learning, covalent docking and molecular dynamics simulations were used to identify novel compounds that have the potential to inhibit both Mpro and PLpro. Results & conclusion: Three compounds were identified that can effectively occupy the Mpro protein cavity with the PLpro protein cavity and form high-frequency contacts with key amino acid residues (Mpro: His41, Cys145, Glu166; PLpro: Cys111). These three compounds can be further investigated as potential lead compounds for SARS-CoV-2 inhibitors.
Asunto(s)
Antivirales/farmacología , Aprendizaje Profundo , Evaluación Preclínica de Medicamentos , SARS-CoV-2/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacologíaRESUMEN
Iris pseudacorus L. has been widely used in aquatic ecosystem to remove nutrient and has achieved positive effects. However, little is known regarding the nutrient-removal performance and physiological responses of I. pseudacorus for brackish eutrophic water treatment due to high nutrients combined with certain salinity levels. In this study, I. pseudacorus-planted microcosms were established to evaluate the capacity of I. pseudacorus to remove excessive nutrients from fresh (salinity 0.05%) and brackish (salinity 0.5%) eutrophic waters. The degradation of total nitrogen and ammonia nitrogen were not affected by 0.5% salinity; 0.5% salinity promoted the degradation of nitrate nitrogen while severely inhibited the degradation of total phosphorus. Additionally, 0.5% salinity was found to induce stress responses quantified by measuring six physiological indexes. Compared to 0.05% salinity, 0.5% salinity resulted in significant decreases in the chlorophyll a, b and total chlorophyll contents of I. pseudacorus which closely related to photosynthesis (p < 0.05). Furthermore, the higher proline, malondialdehyde contents and antioxidant enzyme activities were detected in I. pseudacorus exposed to 0.5% salinity, which provided protection against reactive oxygen species. The results highlight that the cellular stress assays are efficient for monitoring the health of I. pseudacorus in salinity shock-associated constructed wetlands.
Asunto(s)
Género Iris/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Aguas Salinas/química , Cloruro de Sodio/química , Contaminantes del Suelo/metabolismo , Estuarios , Eutrofización , Tolerancia a la Sal , Factores de Tiempo , HumedalesRESUMEN
The enzymes currently used to increase meat tenderness are all mesophilic or thermophilic proteases. This study provides insight into the tenderization effect and the mechanism of a cold-adapted collagenolytic enzyme MCP-01 on beef meat at low temperatures. MCP-01 (10 U of caseinolytic activity) reduced the meat shear force by 23% and increased the relative myofibrillar fragmentation index of the meat by 91.7% at 4 °C, and it also kept the fresh colour and moisture of the meat. Compared to the commercially used tenderizers papain and bromelain, MCP-01 showed a unique tenderization mechanism. MCP-01 had a strong selectivity for degrading collagen at 4 °C, showed a distinct digestion pattern on the myofibrillar proteins, and had a different disruption pattern on the muscle fibres under scanning electron micrograph. These results suggest that the cold-adapted collagenolytic protease MCP-01 may be promising for use as a meat tenderizer at low and moderate temperatures.
Asunto(s)
Colágeno/química , Endopeptidasas/química , Manipulación de Alimentos/métodos , Carne/análisis , Músculo Esquelético/química , Papaína/química , Animales , Bovinos , Frío , Combinación de Medicamentos , Manipulación de Alimentos/instrumentación , Sodio en la DietaRESUMEN
The insulin-like growth factor-1 receptor (IGF-1R) plays an important role in the regulation of cell growth and differentiation, and in protection from apoptosis. IGF-1R has been shown to be an appealing target for the treatment of human cancer. Herein, we report the synthesis, structure-activity relationships (SAR), X-ray cocrystal structure and in vivo tumor study results for a series of 2,4-bis-arylamino-1,3-pyrimidines.
Asunto(s)
Inhibidores de Proteínas Quinasas/química , Pirimidinas/química , Quinolinas/síntesis química , Receptor IGF Tipo 1/antagonistas & inhibidores , Animales , Sitios de Unión , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Humanos , Ratones , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/síntesis química , Pirimidinas/farmacocinética , Quinolinas/química , Quinolinas/farmacocinética , Receptor IGF Tipo 1/metabolismo , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Lck, or lymphocyte specific kinase, is a cytoplasmic tyrosine kinase of the Src family expressed in T-cells and NK cells. Genetic evidence from knockout mice and human mutations demonstrates that Lck kinase activity is critical for T-cell receptor-mediated signaling, leading to normal T-cell development and activation. A small molecule inhibitor of Lck is expected to be useful in the treatment of T-cell-mediated autoimmune and inflammatory disorders and/or organ transplant rejection. In this paper, we describe the structure-guided design, synthesis, structure-activity relationships, and pharmacological characterization of 2-amino-6-phenylpyrimido[5',4':5,6]pyrimido[1,2- a]benzimidazol-5(6 H)-ones, a new class of compounds that are potent inhibitors of Lck. The most promising compound of this series, 6-(2,6-dimethylphenyl)-2-((4-(4-methyl-1-piperazinyl)phenyl)amino)pyrimido[5',4':5,6]pyrimido-[1,2- a]benzimidazol-5(6 H)-one ( 25), exhibits potent inhibition of Lck kinase activity. This activity translates into inhibition of in vitro cell-based assays and in vivo models of T-cell activation and arthritis, respectively.