Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cells ; 12(3)2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36766823

RESUMEN

Human babesiosis is an emerging tick-borne disease, caused by haemoprotozoa genus of Babesia. Cases of transfusion-transmitted and naturally acquired Babesia infection have been reported worldwide in recent years and causing a serious public health problem. Babesia duncani is one of the important pathogens of human babesiosis, which seriously endangers human health. The in vitro culture systems of B. duncani have been previously established, and it requires fetal bovine serum (FBS) to support long-term proliferation. However, there are no studies on serum-free in vitro culture of B. duncani. In this study, we reported that B. duncani achieved long-term serum-free culture in VP-SFM AGTTM (VP-SFM) supplemented with AlbuMaxTM I. The effect of adding different dilutions of AlbuMaxTM I to VP-SFM showed that 2 mg/mL AlbuMaxTM I had the best B. duncani growth curve with a maximum percentage of parasitized erythrocytes (PPE) of over 40%, and it can be used for long-term in vitro culture of B. duncani. However, the commonly used 20% serum-supplemented medium only achieves 20% PPE. Clearly, VP-SFM with 2 mg/mL AlbuMaxTM I (VP-SFMA) is more suitable for the in vitro proliferation of B. duncani. VP-SFM supplemented with CD lipid mixture was also tested, and the results showed it could support the parasite growth at 1:100 dilution with the highest PPE of 40%, which is similar to that of 2 mg/mL AlbuMaxTM I. However, the CD lipid mixture was only able to support the in vitro culture of B. duncani for 8 generations, while VP-SFMA could be used for long-term culture. To test the pathogenicity, the VP-SFMA cultured B. duncani was also subjected to hamster infection. Results showed that the hamster developed dyspnea and chills on day 7 with 30% PPE before treatment, which is similar to the symptoms with un-cultured B. duncani. This study develops a unique and reliable basis for further understanding of the physiological mechanisms, growth characteristics, and pathogenesis of babesiosis, and provides good laboratory material for the development of drugs or vaccines for human babesiosis and possibly other parasitic diseases.


Asunto(s)
Babesia , Babesiosis , Animales , Cricetinae , Humanos , Babesiosis/tratamiento farmacológico , Babesiosis/parasitología , Suero , Suplementos Dietéticos , Lípidos/farmacología
2.
Front Immunol ; 12: 740565, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589089

RESUMEN

Inflammatory bowel disease (IBD) is characterized by chronic and relapsing intestinal inflammation, which currently lacks safe and effective medicine. Some previous studies indicated that Astragaloside IV (AS-IV), a natural saponin extracted from the traditional Chinese medicine herb Ligusticum chuanxiong, alleviates the experimental colitis symptoms in vitro and in vivo. However, the mechanism of AS-IV on IBD remains unclear. Accumulating evidence suggests that M2-polarized intestinal macrophages play a pivotal role in IBD progression. Here, we found that AS-IV attenuated clinical activity of DSS-induced colitis that mimics human IBD and resulted in the phenotypic transition of macrophages from immature pro-inflammatory macrophages to mature pro-resolving macrophages. In vitro, the phenotype changes of macrophages were observed by qRT-PCR after bone marrow-derived macrophages (BMDMs) were induced to M1/M2 and incubated with AS-IV, respectively. In addition, AS-IV was effective in inhibiting pro-inflammatory macrophages and promoting the pro-resolving macrophages to ameliorate experimental colitis via the regulation of the STAT signaling pathway. Hence, we propose that AS-IV can ameliorate experimental colitis partially by modulating macrophage phenotype by remodeling the STAT signaling, which seems to have an essential function in the ability of AS-IV to alleviate the pathological progress of IBD.


Asunto(s)
Antiinflamatorios/uso terapéutico , Colitis/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Macrófagos/fisiología , Factores de Transcripción STAT/metabolismo , Saponinas/uso terapéutico , Triterpenos/uso terapéutico , Animales , Astragalus propinquus , Diferenciación Celular , Colitis/inducido químicamente , Citocinas/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Humanos , Medicina Tradicional China , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
3.
J Biol Chem ; 295(22): 7743-7752, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32341123

RESUMEN

Toxoplasma gondii is a common protozoan parasite that infects a wide range of hosts, including livestock and humans. Previous studies have suggested that the type 2 fatty acid synthesis (FAS2) pathway, located in the apicoplast (a nonphotosynthetic plastid relict), is crucial for the parasite's survival. Here we examined the physiological relevance of fatty acid synthesis in T. gondii by focusing on the pyruvate dehydrogenase complex and malonyl-CoA-[acyl carrier protein] transacylase (FabD), which are located in the apicoplast to drive de novo fatty acid biosynthesis. Our results disclosed unexpected metabolic resilience of T. gondii tachyzoites, revealing that they can tolerate CRISPR/Cas9-assisted genetic deletions of three pyruvate dehydrogenase subunits or FabD. All mutants were fully viable in prolonged cultures, albeit with impaired growth and concurrent loss of the apicoplast. Even more surprisingly, these mutants displayed normal virulence in mice, suggesting an expendable role of the FAS2 pathway in vivo Metabolic labeling of the Δpdh-e1α mutant showed reduced incorporation of glucose-derived carbon into fatty acids with medium chain lengths (C14:0 and C16:0), revealing that FAS2 activity was indeed compromised. Moreover, supplementation of exogenous C14:0 or C16:0 significantly reversed the growth defect in the Δpdh-e1α mutant, indicating salvage of these fatty acids. Together, these results demonstrate that the FAS2 pathway is dispensable during the lytic cycle of Toxoplasma because of its remarkable flexibility in acquiring fatty acids. Our findings question the long-held assumption that targeting this pathway has significant therapeutic potential for managing Toxoplasma infections.


Asunto(s)
Apicoplastos/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/farmacología , Toxoplasma/metabolismo , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/genética , S-Maloniltransferasa de la Proteína Transportadora de Grupos Acilo/metabolismo , Apicoplastos/genética , Ácidos Grasos/genética , Eliminación de Gen , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/genética
4.
Sci Rep ; 10(1): 4709, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170197

RESUMEN

A simple and effective method for determining five pyrethroid residues in herbal tea by ultrasound-enhanced temperature-controlled (UETC) ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) coupled with high performance liquid chromatography-diode array detection (HPLC-DAD) was developed. The use of ultrasonication and heating improved the ability of the ionic liquid to extract the analytes. Various parameters that affect the extraction efficiency were investigated and optimized using single factor experiments and response surface design. The optimum conditions of the experiment were 121 µL of [HMIM][PF6] (extraction solvent), 794 µL of acetonitrile (dispersive solvent), a heating temperature of 40°C, a sonication time of 3.6 min and a pH of 2.9. Under optimized conditions, the linearity was in the range of 0.05-5 mg L-1 with correlation coefficients above 0.9993. The limits of detection and quantification were 1.25-1.35 µg L-1 and 5 µg L-1, respectively. The mean recoveries of the five pyrethroids ranged from 74.02% to 109.01%, with RSDs below 9.04%. The proposed method was reliable for the analysis of pyrethroids in Chinese herbal tea.


Asunto(s)
Contaminación de Alimentos , Insecticidas/análisis , Líquidos Iónicos/química , Piretrinas/análisis , Tés de Hierbas/análisis , Temperatura , Cromatografía Líquida de Alta Presión , Concentración de Iones de Hidrógeno , Microextracción en Fase Líquida , Reproducibilidad de los Resultados , Factores de Riesgo , Solventes/química , Sonicación/métodos
5.
Molecules ; 24(6)2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30875921

RESUMEN

A method for detecting the organophosphorus pesticides residue and aflatoxins in China herbal tea has been developed by UPLC-MS/MS coupled with vortex-assisted dispersive liquid-liquid microextraction (DLLME). The extraction conditions for vortex-assisted DLLME extraction were optimized using single-factor experiments and response surface design. The optimum conditions for the experiment were the pH 5.1, 347 µL of chloroform (extraction solvent) and 1614 µL of acetonitrile (dispersive solvent). Under the optimum conditions, the targets were good linearity in the range of 0.1 µg/L⁻25 µg/L and the correlation coefficient above 0.9998. The mean recoveries of all analytes were in the ranged from 70.06%⁻115.65% with RSDs below 8.54%. The detection limits were in the range of 0.001 µg/L⁻0.01µg/L. The proposed method is a fast and effective sample preparation with good enrichment and extraction efficiency, which can simultaneously detect pesticides and aflatoxins in China herbal tea.


Asunto(s)
Aflatoxinas/análisis , Plaguicidas/análisis , Tés de Hierbas/análisis , Cromatografía Líquida de Alta Presión , Límite de Detección , Microextracción en Fase Líquida , Solventes/química , Espectrometría de Masas en Tándem
6.
Front Pharmacol ; 9: 850, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30116194

RESUMEN

Acute lung injury (ALI) is a common clinical disease with high morbidity in both humans and animals. Ginsenoside Rg3, a type of traditional Chinese medicine extracted from ginseng, is widely used to cure many inflammation-related diseases. However, the specific molecular mechanism of the effects of ginsenoside Rg3 on inflammation has rarely been reported. Thus, we established a mouse model of lipopolysaccharide (LPS)-induced ALI to investigate the immune protective effects of ginsenoside Rg3 and explore its molecular mechanism. In wild type (WT) mice, we found that ginsenoside Rg3 treatment significantly mitigated pathological damages and reduced myeloperoxidase (MPO) activity as well as the production of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6); furthermore, the production of anti-inflammatory mediators interleukin-10 (IL-10) and transforming growth factor-ß (TGF-ß), polarization of M2 macrophages and expression levels of the phosphorylation of phosphatidylinositol 3-hydroxy kinase (PI3K), protein kinase B (PKB, also known as AKT), mammalian target of rapamycin (mTOR) and Mer receptor tyrosine kinase (MerTK) were promoted. However, there were no significant differences with regards to the pathological damage, MPO levels, inflammatory cytokine levels, and protein expression levels of the phosphorylation of PI3K, AKT and mTOR between the LPS treatment group and ginsenoside Rg3 group in MerTK-/- mice. Taken together, the present study demonstrated that ginsenoside Rg3 could attenuate LPS-induced ALI by decreasing the levels of pro-inflammatory mediators and increasing the production of anti-inflammatory cytokines. These processes were mediated through MerTK-dependent activation of its downstream the PI3K/AKT/mTOR pathway. These findings identified a new site of the specific anti-inflammatory mechanism of ginsenoside Rg3.

7.
Sci Rep ; 7(1): 8693, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821723

RESUMEN

RIO kinases are essential atypical protein kinases in diverse prokaryotic and eukaryotic organisms, playing significant roles in yeast and humans. However, little is known about their functions in parasitic nematodes. In the present study, we have isolated and characterized the full-length cDNA, gDNA and a putative promoter of a RIOK-2 protein kinase (Ss-RIOK-2) encoding gene (Ss-riok-2) from Strongyloides stercoralis, a medically important parasitic nematode (Order Rhabditida). A three-dimensional structure (3D) model of Ss-RIOK-2 was generated using the Chaetomium thermophilum RIOK-2 protein kinase (Ct-RIOK-2) crystal structure 4GYG as a template. A docking study revealed some critical sites for ATP binding and metal binding. The putative promoter of Ss-riok-2 contains a number of conserved elements. RNAseq analysis revealed the highest levels of the Ss-riok-2 transcript in free-living females and parasitic females. To identify anatomical patterns of Ss-riok-2 expression in S. stercoralis, we observed expression patterns of a transgene construct encoding green fluorescent protein under the Ss-riok-2 promoter in post free-living S. stercoralis. Expression driven by this promoter predominated in intestinal cells. This study demonstrates significant advancement in molecular and cellular biological study of S. stercoralis and of parasitic nematodes generally, and provides a foundation for further functional genomic studies.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes de Helminto , Proteínas Quinasas/química , Proteínas Quinasas/genética , Strongyloides stercoralis/enzimología , Strongyloides stercoralis/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , ADN Complementario/genética , Evolución Molecular , Genoma , Humanos , Estadios del Ciclo de Vida/genética , Modelos Moleculares , Fosforilación , Filogenia , Regiones Promotoras Genéticas , Proteínas Quinasas/metabolismo , Especificidad de la Especie , Strongyloides stercoralis/crecimiento & desarrollo , Homología Estructural de Proteína , Transcripción Genética
8.
Cancer Res ; 76(6): 1403-15, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26759236

RESUMEN

Tumor-associated macrophages (TAM) contribute greatly to hallmarks of cancer. Notch blockade was shown to arrest TAM differentiation, but the precise role and underlying mechanisms require elucidation. In this study, we employed a transgenic mouse model in which the Notch1 intracellular domain (NIC) is activated conditionally to define the effects of active Notch1 signaling in macrophages. NIC overexpression had no effect on TAM differentiation, but it abrogated TAM function, leading to repressed growth of transplanted tumors. Macrophage miRNA profiling identified a novel downstream mediator of Notch signaling, miR-125a, which was upregulated through an RBP-J-binding site at the first intronic enhancer of the host gene Spaca6A. miR-125a functioned downstream of Notch signaling to reciprocally influence polarization of M1 and M2 macrophages by regulating factor inhibiting hypoxia inducible factor-1α and IRF4, respectively. Notably, macrophages transfected with miR-125a mimetics increased phagocytic activity and repressed tumor growth by remodeling the immune microenvironment. We also identified a positive feedback loop for miR-125a expression mediated by RYBP and YY1. Taken together, our results showed that Notch signaling not only supported the differentiation of TAM but also antagonized their protumorigenic function through miR-125a. Targeting this miRNA may reprogram macrophages in the tumor microenvironment and restore their antitumor potential.


Asunto(s)
Macrófagos/fisiología , MicroARNs/genética , Receptor Notch1/genética , Regulación hacia Arriba/genética , Animales , Diferenciación Celular/genética , Línea Celular , Regulación Neoplásica de la Expresión Génica/genética , Factores Reguladores del Interferón/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos/genética , Proteínas Represoras/genética , Transducción de Señal/genética , Factor de Transcripción YY1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA