Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 6: 31315, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27501997

RESUMEN

p-Hydroxylcinnamaldehyde (CMSP) has been identified as an inhibitor of the growth of various cancer cells. However, its function in oesophageal squamous cell carcinoma (ESCC) and the underlying mechanism remain unclear. The aim of the present study was to characterize the differentiation effects of CMSP, as well as its mechanism in the differentiation of ESCC Kyse30 and TE-13 cells. The function of CMSP in the viability, colony formation, migration and invasion of Kyse30 and TE-13 cells was determined by MTS, colony-formation, wound healing and transwell assays. Western blotting and pull-down assays were used to investigate the effect of CMSP on the expression level of malignant markers of ESCC, as well as the activity of MAPKs, RhoA and GTP-RhoA in Kyse30 and TE-13 cells. We found that CMSP could inhibit proliferation and migration and induce Kyse30 and TE-13 cell differentiation, characterized by dendrite-like outgrowth, decreased expression of tumour-associated antigens, as well as the decreased expression of malignant markers. Furthermore, increased cAMP, p-P38 and decreased activities of ERK, JNK and GTP-RhoA, were detected after treatment with CMSP. These results indicated that CMSP induced the differentiation of Kyse30 and TE-13 cells through mediating the cAMP-RhoA-MAPK axis, which might provide new potential strategies for ESCC treatment.


Asunto(s)
Acroleína/análogos & derivados , Carcinoma de Células Escamosas/metabolismo , Cinamatos/farmacología , Neoplasias Esofágicas/metabolismo , Acroleína/farmacología , Animales , Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , AMP Cíclico/metabolismo , Carcinoma de Células Escamosas de Esófago , Esófago/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Medicina Tradicional China , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Proteína de Unión al GTP rhoA/metabolismo
2.
Cell Physiol Biochem ; 38(5): 1939-51, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27160973

RESUMEN

BACKGROUND/AIMS: Periplocin is extracted from the traditional herbal medicine cortex periplocae, which has been reported to suppress the growth of cancer cells. However, little is known about its effect on gastric cancer cells. METHODS: Gastric cancer cells were treated with periplocin, and cell viability was assessed using MTS assay. Flow cytometry and TUNEL staining were performed to evaluate apoptosis, and protein expression was examined by western blotting. Microarray analysis was used to screen for changes in related genes. RESULTS: We found that periplocin had an inhibitory effect on gastric cancer cell viability in a dose-dependent manner. Periplocin inhibited cell viability via the ERK1/2-EGR1 pathway to induce apoptosis. Periplocin also inhibited the growth of tumor xenografts and induced apoptosis in vivo. CONCLUSION: Our results show that periplocin inhibits the proliferation of gastric cancer cells and induces apoptosis in vitro and in vivo, indicating its potential to be used as an antitumor drug.


Asunto(s)
Apocynaceae/química , Apoptosis/efectos de los fármacos , Saponinas/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Apocynaceae/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Extractos Vegetales/química , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Trasplante Heterólogo
3.
Zhongguo Zhong Yao Za Zhi ; 40(6): 1207-11, 2015 Mar.
Artículo en Chino | MEDLINE | ID: mdl-26226772

RESUMEN

To investigate the effect of Tanreqing injection on immune activity of peripheral blood lymphocytes of patients with lung cancer. The peripheral blood lymphocytes of patients with lung cancer and healthy persons were separated by the density gradient centrifugation method for subsequent experiments, with those from healthy persons as the positive control. The effect of Tanreqing injection on stimulating the proliferation of lymphocytes with phytohemagglutinin (PHA) was determined by MTT method. The effect of Tanreqing injection on the lymphocyte secretions of IFN-γ and TNF-α and the subset ratio of lymphocytes cultured separately or with Tanreqing injection of different concentrations were examined by ELISA and flow cytometry (FCM) respectively. In addition, the LDH release assay was used to detect the cytotoxicity of cytotoxic T cells (CTL) and natural killer cells (NK). According to the findings, all of immunological indexes of lymphocytes from patients with lung cancer were weaker than that of healthy persons, but with the obvious increases in proliferation activity and IFN-γ and TNF-α secretions of lymphocytes co-cultured with Tanreqing Injection (P < 0.05). Among lymphocyte subsets co-cultured with Tanreqing Injection, CD3+, CD3+ CD4+ and CD3- CD16 + 56+ cell ratios notably increased, whereas CD4+ CD25+ Treg cell ratio obviously decreased (P < 0.05). In the meantime, Tanreqing injection can markedly promote the cytotoxicities of CTL and NK (P < 0.05). In conclusion, Tanreqing injection shows a significant effect in promoting the immune activity of lymphocytes from patients with lung cancer and their anti-tumor immunity.


Asunto(s)
Medicamentos Herbarios Chinos/administración & dosificación , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Linfocitos T Citotóxicos/inmunología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Interferón gamma/genética , Interferón gamma/inmunología , Células Asesinas Naturales/efectos de los fármacos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatología , Linfocitos T Citotóxicos/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
4.
Int J Biol Macromol ; 76: 63-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25709011

RESUMEN

In this study, we investigate the efficacy of SP (Schisandra polysaccharide) in prevention of radiation-induced immune dysfunction and discussed the underlying mechanisms with a Bal/bc mouse model. The data demonstrated that SP could reverse the decreases in the number of white blood cells and lymphocytes in peripheral blood. In addition, the immunoglobulin G (IgG) and complement C3 in blood serum were all decreased after radiation and SP could restore this radiation disorder. Furthermore, SP could reverse the deregulation of CD3(+)CD4(+) and CD3(+)CD8(+) T cell subsets in peripheral blood and thymus of mice after radiotherapy. We also performed terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) and Immunohistochemistry (IHC) to investigate the apoptosis and underlying mechanisms of SP in thymus. Data showed that radiation-induced apoptosis of thymocytes could be reversed by SP through inducing upregulation of Bcl-2 expression and downregulation of Fas and Bax levels. Furthermore, SP has no any side-effects on immunity of normal mice. In conclusion, our results indicated that SP could effectively prevent immune injury during radiotherapy by protecting the immune system. This valuable information should be of assistance in choosing a rational design for therapeutic interventions of prevention immune system damage in the radiation treatment.


Asunto(s)
Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/efectos de la radiación , Extractos Vegetales/farmacología , Polisacáridos/farmacología , Protectores contra Radiación/farmacología , Radiación , Schisandra/química , Animales , Complemento C3 , Regulación de la Expresión Génica/efectos de los fármacos , Inmunoglobulina G/sangre , Recuento de Linfocitos , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/metabolismo , Linfocitos/efectos de la radiación , Masculino , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/efectos de la radiación , Timocitos/efectos de los fármacos , Timocitos/efectos de la radiación , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
5.
Asian Pac J Cancer Prev ; 13(8): 3795-802, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23098473

RESUMEN

Cochinchina momordica seeds (CMS) have been widely used due to antitumor activity by Mongolian tribes of China. However, the details of the underlying mechanisms remain unknown. In the present study, we found that an EtOAc (ethyl ester) extract of CMS (CMSEE) induced differentiation and caused growth inhibition of melanoma B16 F1 cells. CMSEE at the concentration of 5-200 µg/ml exhibited strongest anti-proliferative effects on B16 F1 cells among other CMS fractions (water or petroleum ether). Moreover, CMSEE induced melanoma B16 F1 cell differentiation, characterized by dendrite-like outgrowth, increasing melanogenesis production, as well as enhancing tyrosinase activity. Western blot analysis showed that sustained phosphorylation of p38 MAP accompanied by decrease in ERK1/2 and JNK dephosphorylation were involved in CMSEE-induced B16 F1 cell differentiation. Notably, 6 compounds that were isolated and identified may be responsible for inducing differentiation of CMSEE. These results indicated that CMSEE contributes to the differentiation of B16 F1 cells through modulating MAPKs activity, which may throw some light on the development of potentially therapeutic strategies for melanoma treatment.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , MAP Quinasa Quinasa 4/metabolismo , Melanoma Experimental/patología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Momordica/química , Fitoterapia , Semillas/química , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Ésteres/química , Citometría de Flujo , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Ratones , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Fosforilación/efectos de los fármacos , Extractos Vegetales/farmacología , Transducción de Señal , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA