Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Biol ; 222(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37831441

RESUMEN

The dependency of cancer cells on iron increases their susceptibility to ferroptosis, thus providing new opportunities for patients with treatment-resistant tumors. However, we show that lipid peroxidation, a hallmark of ferroptosis, was found in various areas of patient samples, indicating the potential resistance of ferroptosis. Using whole deubiquitinases (DUBs) sgRNA screening, we found that loss of ZRANB1 confers cancer cell resistance to ferroptosis. Intriguingly, functional studies revealed that ZRANB1 ubiquitinates and represses SLC7A11 expression as an E3 ubiquitin ligase and that ZRANB1 inhibits glutathione (GSH) synthesis through SLC7A11 degradation, leading to elevated lipid peroxidation and ferroptosis. Deletion of the region (residues 463-584) abolishes the E3 activity of ZRANB1. Moreover, we show that ZRANB1 has lower expression in tumors, which is positively correlated with lipid peroxidation. Collectively, our results demonstrate the role of ZRANB1 in ferroptosis resistance and unveil mechanisms involving modulation of E3 ligase activity through an unconventional catalytic domain.


Asunto(s)
Endopeptidasas , Neoplasias , Ubiquitina-Proteína Ligasas , Humanos , Sistema de Transporte de Aminoácidos y+/genética , Enzimas Desubicuitinizantes , Glutatión , Peroxidación de Lípido , ARN Guía de Sistemas CRISPR-Cas , Ubiquitina-Proteína Ligasas/genética , Ferroptosis , Endopeptidasas/genética
2.
Sci Total Environ ; 881: 163428, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37061066

RESUMEN

Many trace metal pollutants in surface water, the atmosphere, and soil are carcinogenic, and ribosome biogenesis plays an important role in the carcinogenicity of heavy metals. However, the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in environmental carcinogenesis is not fully understood. Here, from a perspective of the most predominant and abundant RNA epigenetic modification, N6-methyladenosine (m6A), we explored the reason behind this contradiction at the post-transcriptional level using arsenite-induced skin carcinogenesis models both in vitro and in vivo. Based on the m6A microarray assay and a series of experiments, we found for the first time that the elevated m6A in arsenite-induced transformation is mainly enriched in the genes regulating ribosome biogenesis. m6A upregulates ribosome biogenesis post-transcriptionally by stabilizing ribosomal proteins and modulating non-coding RNAs targeting ribosomal RNAs and proteins, leading to arsenite-induced skin carcinogenesis. Using multi-omics analysis of human subjects and experimental validation, we identified an unconventional role of a well-known key proliferative signaling node AKT1 as a vital mediator between m6A and ribosome biogenesis in arsenic carcinogenesis. m6A activates AKT1 and transmits proliferative signals to ribosome biogenesis, exacerbating the upregulation of ribosome biogenesis in arsenite-transformed keratinocytes. Similarly, m6A promotes cell proliferation by upregulating ribosome biogenesis in cell transformation induced by carcinogenic heavy metals (chromium and nickel). Importantly, inhibiting m6A reduces ribosome biogenesis. Targeted inhibition of m6A-upregulated ribosome biogenesis effectively prevents cell transformation induced by trace metals (arsenic, chromium, and nickel). Our results reveal the mechanism of ribosome biogenesis upregulated by m6A in the carcinogenesis of trace metal pollutants. From the perspective of RNA epigenetics, our study improves our understanding of the contradiction between upregulated ribosome biogenesis and decreased ribosomal DNA copy number in the carcinogenesis of environmental carcinogens.


Asunto(s)
Adenosina , Arsénico , Carcinogénesis , Contaminantes Ambientales , Metales Pesados , Ribosomas , Ribosomas/metabolismo , Adenosina/análogos & derivados , Arsénico/toxicidad , Metales Pesados/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino , Animales , Ratones , Contaminantes Ambientales/toxicidad
3.
Nutrients ; 15(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36615800

RESUMEN

Nicotinamide mononucleotide (NMN) is a natural antioxidant approved as a nutritional supplement and food ingredient, but its protective role in silicosis characterized by oxidative damage remains unknown. In this study, we generated a silicosis model by intratracheal instillation of silica, and then performed histopathological, biochemical, and transcriptomic analysis to evaluate the role of NMN in silicosis. We found that NMN mitigated lung damage at 7 and 28 days, manifested as a decreasing coefficient of lung weight and histological changes, and alleviated oxidative damage by reducing levels of reactive oxygen species and increasing glutathione. Meanwhile, NMN treatment also reduced the recruitment of inflammatory cells and inflammatory infiltration in lung tissue. Transcriptomic analysis showed that NMN treatment mainly regulated immune response and glutathione metabolism pathways. Additionally, NMN upregulated the expression of antioxidant genes Gstm1, Gstm2, and Mgst1 by promoting the expression and nuclear translocation of nuclear factor-erythroid 2 related factor 2 (Nrf2). Gene interaction analysis showed that Nrf2 interacted with Gstm1 and Mgst1 through Gtsm2. Promisingly, oxidative damage mediated by these genes occurred mainly in fibroblasts. In summary, NMN alleviates silica-induced oxidative stress and lung injury by regulating the endogenous glutathione metabolism pathways. This study reveals that NMN supplementation might be a promising strategy for mitigating oxidative stress and inflammation in silicosis.


Asunto(s)
Lesión Pulmonar , Silicosis , Ratones , Animales , Mononucleótido de Nicotinamida , Antioxidantes/farmacología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Dióxido de Silicio/toxicidad , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/prevención & control , Silicosis/tratamiento farmacológico , Glutatión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA