Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36557801

RESUMEN

Cercis glabra is a plant belonging to the legume family, whose flowers and barks are commonly used as food and traditional Chinese medicines. However, its leaves are usually disposed of as wastes. This research comprehensively investigated the bioactive constituents of C. glabra leaves, and two new phenolic, ceroffesters A-B (1-2) and thirteen known compounds (3-15) were isolated. Their structures were elucidated by spectroscopic methods such as nuclear magnetic resonance (1D NMR and 2D NMR), high-resolution electrospray ionization mass spectra (HR-ESI-MS), optical rotatory dispersion (ORD) and electronic circular dichroism (ECD). All of them were assessed for their antioxidant activities through ABTS, DPPH and PTIO methodologies, and evaluated for inhibitory activities against two enzymes (mushroom tyrosinase and acetylcholinesterase). As a result, compounds 3-6, 10 and 13 exhibited evident antioxidant activities. Meanwhile, compounds 5, 10 and 13 showed the most potent tyrosinase inhibitory activities, with IC50 of 0.64, 0.65 and 0.59 mM, and compared with the positive control of 0.63 mM (kojic acid). In the initial concentration of 1 mg/mL, compounds 3, 5 and 6 demonstrated moderate inhibitory activities against acetylcholinesterase with 85.27 ± 0.06%, 83.65 ± 0.48% and 82.21 ± 0.09%, respectively, compared with the positive control of 91.17 ± 0.23% (donepezil). These bioactive components could be promising antioxidants, tyrosinase and acetylcholinesterase inhibitors.


Asunto(s)
Antioxidantes , Fabaceae , Antioxidantes/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/análisis , Monofenol Monooxigenasa , Acetilcolinesterasa , Extractos Vegetales/química , Hojas de la Planta/química
2.
J Environ Manage ; 317: 115359, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35623128

RESUMEN

Bauxite residue poses an increasingly serious ecological safety problem in the alumina industry. A novel process for removing sodium in bauxite residue synergistic preparation of potassium-containing compound fertilizer raw materials was proposed to relieve pressure on the fertilizer industry. In this paper, synthetic sodalite and katoite were used to simulate the main mineral phases of bauxite residue to determine the suitable conditions for the method, and the transformation mechanism of the process was researched by analyzing the phase structure and microscopic morphology of the samples using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and specific surface area detection. The results show that the ideal reaction condition is 320 g/L K2O with solid reactants at 200 °C for 1 h. The separation rate of Na in the sodalite-katoite mixture reached 93.60%, with potassium aluminum silicate and katoite being the primary phases of the product, with a mesoporous structure and easy to be absorbed by crops. The bauxite residue transformation residue consisted of katoite and kaliophilite. With a total effective K2O, CaO, and SiO2 content of 38.22%, the Na2O content was 0.54%, meeting the requirements of compound fertilizer content on the market. The transformation mechanism is a dissolution-precipitation controlled sodium-potassium ion replacement reaction. This study provides theoretical guidance for the preparation of mineral fertilizer from bauxite residue and has practical production potential, opening up a new perspective for bauxite residue resource usage in the agricultural field.


Asunto(s)
Óxido de Aluminio , Potasio , Óxido de Aluminio/química , Fertilizantes , Iones , Dióxido de Silicio , Sodio
3.
Chem Commun (Camb) ; 57(75): 9554-9557, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34546236

RESUMEN

Herein, seven viscosity-sensitive probes were developed via simple structural modification of dicyanoisophorone (DCO)-derived dyes. Among them, DCO-5 significantly enhances (180-fold) the response signal in highly viscous aqueous media while showing insensitivity to polarity changes or pH variations, and enables the successful detection of viscosity changes in nystatin-treated HepG2 cells, PC 12 cells and zebrafish.


Asunto(s)
Colorantes Fluorescentes/química , Isocianatos/química , Animales , Evaluación Preclínica de Medicamentos , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Estructura Molecular , Células PC12 , Ratas , Viscosidad , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA