Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1288479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318135

RESUMEN

Background: This study aimed to assess the overall reporting quality of randomized controlled trials (RCTs) in Chinese herbal medicine (CHM) formulas for patients with diabetes, and to identify factors associated with better reporting quality. Methods: Four databases including PubMed, Embase, Cochrane Library and Web of Science were systematically searched from their inception to December 2022. The reporting quality was assessed based on the Consolidated Standards of Reporting Trials (CONSORT) statement and its CHM formula extension. The overall CONSORT and its CHM formula extension scores were calculated and expressed as proportions separately. We also analyzed the pre-specified study characteristics and performed exploratory regressions to determine their associations with the reporting quality. Results: Seventy-two RCTs were included. Overall reporting quality (mean adherence) were 53.56% and 45.71% on the CONSORT statement and its CHM formula extension, respectively. The strongest associations with reporting quality based on the CONSORT statement were multiple centers and larger author numbers. Compliance with the CHM formula extension, particularly regarding the disclosure of the targeted traditional Chinese medicine (TCM) pattern (s), was generally insufficient. Conclusion: The reporting quality of RCTs in CHM formulas for diabetes remains unsatisfactory, and the adherence to the CHM formula extension is even poorer. In order to ensure transparent and standardized reporting of RCTs, it is essential to advocate for or even mandate adherence of the CONSORT statement and its CHM formula extension when reporting trials in CHM formulas for diabetes by both authors and editors.

2.
Biomater Adv ; 154: 213593, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37657278

RESUMEN

Nanotechnology has revolutionized the field of therapeutics by introducing a plethora of nanomaterials capable of enhancing traditional drug efficacy or paving the way for innovative treatment methods. Within this domain, we propose a novel Cobalt-doped hollow polydopamine nanosphere system. This system, incorporating Doxorubicin loading and hyaluronic acid (HA) surface coating (CoHPDA@DOX-HA), is designed for combined tumor therapy. The overarching aim is to diminish the administration dosage, mitigate the cytotoxic side effects of chemotherapy drugs, augment chemosensitivity within neoplastic tissues, and attain superior results in tumor treatment via combined therapeutic strategies. The targeted molecule, hyaluronic acid (HA), amplifies the biocompatibility of CoHPDA@DOX-HA throughout circulation and fosters endocytosis of the nanoparticle system within cancer cells. This nanosphere system possesses pH sensitivity properties, allowing for a meticulous drug release within the acidic microenvironment of tumor cells. Concurrently, Polydopamine (PDA) facilitates proficient photothermal therapy upon exposure to 808 nm laser irradiation. This process further amplifies the Glutathione (GSH) depletion, and when coupled with the oxygen production capabilities of the Cobalt-doped hollow PDA, significantly enhances the chemo-photothermal therapeutic efficiency. Findings from the treatment of tumor-bearing mice substantiate that even at dosages equivalent to a singular DOX administration, the CoHPDA@DOX-HA can provide efficacious synergistic therapy. Therefore, it is anticipated that multifunctional nanomaterials with Photoacoustic Tomography (PAT) imaging capabilities, targeted delivery, and a controlled collaborative therapeutic framework may serve as promising alternatives for accurate diagnostics and efficacious treatment strategies.


Asunto(s)
Hipertermia Inducida , Neoplasias , Animales , Ratones , Fototerapia , Oxígeno/uso terapéutico , Ácido Hialurónico/química , Ácido Hialurónico/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Doxorrubicina/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Glutatión , Microambiente Tumoral
3.
Nanotechnology ; 33(45)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35914421

RESUMEN

To fabricate a novel stimuli-responsive system enabling controlled drug release and synergistic therapy, yolk-shell shaped bismuth sulfide modified with Au nanoparticles (Au-Bi2S3) was prepared. The Au-Bi2S3nanomaterial with heterojunction structure exhibited excellent photothermal conversion efficiency and considerable free radicals yield under laser irradiation. The drug delivery capacity was confirmed by co-loading Berberine hydrochloride (BBR) and a phase change material 1-tetradecanol (PCM), which could be responsible for NIR light induced thermal controlled drug release.In vitroinvestigation demonstrated that Au-Bi2S3has cell selectivity, and with the assistance of the properties of Au-Bi2S3, the loaded drug could give full play to their cancer cell inhibition ability. Our work highlights the great potential of this nanoplatform which could deliver and control Berberine hydrochloride release as well as realize the synergistic anti-tumor strategy of photothermal therapy, photodynamic therapy and chemotherapy for tumor therapy.


Asunto(s)
Berberina , Nanopartículas del Metal , Nanopartículas , Neoplasias , Berberina/farmacología , Berberina/uso terapéutico , Bismuto , Línea Celular Tumoral , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Oro/química , Humanos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Preparaciones Farmacéuticas , Fototerapia , Sulfuros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA