Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Biol Interact ; 393: 110944, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38518851

RESUMEN

Ferroptosis is a form of programmed cell death involved in various types of acute kidney injury (AKI). It is characterized by inactivation of the selenoprotein, glutathione peroxidase 4 (GPX4), and upregulation of acyl-CoA synthetase long-chain family member 4 (ACSL4). Since urinary selenium binding protein 1 (SBP1/SELENBP1) is a potential biomarker for AKI, this study investigated whether SBP1 plays a role in AKI. First, we showed that SBP1 is expressed in proximal tubular cells in normal human kidney, but is significant downregulated in cases of AKI in association with reduced GPX4 expression and increased ACSL4 expression. In mouse renal ischemia-reperfusion injury (I/R), the rapid downregulation of SBP1 protein levels preceded downregulation of GPX4 and the onset of necrosis. In vitro, hypoxia/reoxygenation (H/R) stimulation in human proximal tubular epithelial (HK-2) cells induced ferroptotic cell death in associated with an acute reduction in SBP1 and GPX4 expression, and increased oxidative stress. Knockdown of SBP1 reduced GPX4 expression and increased the susceptibility of HK-2 cells to H/R-induced cell death, whereas overexpression of SBP1 reduced oxidative stress, maintained GPX4 expression, reduced mitochondrial damage, and reduced H/R-induced cell death. Finally, selenium deficiency reduced GPX4 expression and promoted H/R-induced cell death, whereas addition of selenium was protective against H/R-induced oxidative stress. In conclusion, SBP1 plays a functional role in hypoxia-induced tubular cell death. Enhancing SBP1 expression is a potential therapeutic approach for the treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Selenio , Animales , Humanos , Ratones , Lesión Renal Aguda/inducido químicamente , Células Epiteliales/metabolismo , Hipoxia , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Selenio/farmacología , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo
2.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638423

RESUMEN

Maraviroc (MVC), a CCR5 antagonist, reduces liver fibrosis, injury and tumour burden in mice fed a hepatocarcinogenic diet, suggesting it has potential as a cancer therapeutic. We investigated the effect of MVC on liver progenitor cells (LPCs) and macrophages as both have a role in hepatocarcinogenesis. Mice were fed the hepatocarcinogenic choline-deficient, ethionine-supplemented diet (CDE) ± MVC, and immunohistochemistry, RNA and protein expression were used to determine LPC and macrophage abundance, migration and related molecular mechanisms. MVC reduced LPC numbers in CDE mice by 54%, with a smaller reduction seen in macrophages. Transcript and protein abundance of LPC-associated markers correlated with this reduction. The CDE diet activated phosphorylation of AKT and STAT3 and was inhibited by MVC. LPCs did not express Ccr5 in our model; in contrast, macrophages expressed high levels of this receptor, suggesting the effect of MVC is mediated by targeting macrophages. MVC reduced CD45+ cells and macrophage migration in liver and blocked the CDE-induced transition of liver macrophages from an M1- to M2-tumour-associated macrophage (TAM) phenotype. These findings suggest MVC has potential as a re-purposed therapeutic agent for treating chronic liver diseases where M2-TAM and LPC numbers are increased, and the incidence of HCC is enhanced.

3.
Biomed Res Int ; 2019: 2579734, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312655

RESUMEN

Overweight and obesity are major threats to human health. Tea polyphenols exert multiple beneficial effects on human health and may play a positive regulatory role in fat assumption. However, how tea polyphenols contribute to the regulation of fat metabolism remains unclear to date. Small RNA expression profile can be regulated by tea polyphenols in adipocytes. Therefore, tea polyphenols may regulate fat metabolism by controlling small RNA-associated biological processes. In this study, we developed a systematic research platform based on mouse models and performed small RNA sequencing to identify the specific role of small RNAs in the regulatory effect of tea polyphenols on fat metabolism. We compared the expression levels of different small RNA subtypes, including piRNAs and miRNAs, and identified a group of differentially expressed small RNAs in the experimental and control groups. Most of these small RNAs participate in lipid metabolism, suggesting that small RNAs play a significant role in tea polyphenol-associated obesity and related pathogenesis. Furthermore, gene ontology and KEGG pathway enrichment indicated that small RNAs influence the regulatory effects of tea polyphenols on obesity, revealing the potential pathogenic mechanisms for such nutritional disease.


Asunto(s)
Hígado/efectos de los fármacos , Obesidad/dietoterapia , Polifenoles/farmacología , Té/química , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Ratones , Obesidad/patología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA