Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytother Res ; 38(3): 1681-1694, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311336

RESUMEN

Diabetic cardiomyopathy (DCM) is an important complication resulting in heart failure and death of diabetic patients. However, there is no effective drug for treatments. This study investigated the effect of D-pinitol (DP) on cardiac injury using diabetic mice and glycosylation injury of cardiomyocytes and its molecular mechanisms. We established the streptozotocin-induced SAMR1 and SAMP8 mice and DP (150 mg/kg/day) intragastrically and advanced glycation end-products (AGEs)-induced H9C2 cells. H9C2 cells were transfected with optineurin (OPTN) siRNA and overexpression plasmids. The metabolic disorder indices, cardiac dysfunction, histopathology, immunofluorescence, western blot, and immunoprecipitation were investigated. Our results showed that DP reduced the blood glucose and AGEs, and increased the expression of heart OPTN in diabetic mice and H9C2 cells, thereby inhibiting the endoplasmic reticulum stress (GRP78, CHOP) and glycophagy (STBD1, GABARAPL1), and alleviating the myocardial apoptosis and fibrosis of DCM. The expression of filamin A as an interaction protein of OPTN downregulated by AGEs decreased OPTN abundance. Moreover, OPTN siRNA increased the expression of GRP78, CHOP, STBD1, and GABARAPL1 and inhibited the expression of GAA via GSK3ß phosphorylation and FoxO1. DP may be helpful to treat the onset of DCM. Targeting OPTN with DP could be translated into clinical application in the fighting against DCM.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Inositol/análogos & derivados , Humanos , Ratones , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Chaperón BiP del Retículo Endoplásmico , Miocitos Cardíacos , Estrés del Retículo Endoplásmico , Transducción de Señal , Apoptosis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/farmacología
2.
J Med Food ; 27(4): 312-329, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38377550

RESUMEN

Hyperuricemia (HUA) is a metabolic disease and contributes to renal injury (RI). Vine grape tea polyphenols (VGTP) have been widely used to treat HUA and RI. However, the potential mechanism of VGTP activity remains unclear. To explore the underlying mechanism of VGTP treatment for HUA-induced RI based on network pharmacology that is confirmed by an in vivo study. All ingredients of VGTP were retrieved using a Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Comparative Toxicogenomics Database systems. The related targets of HUA and RI were obtained from GeneCards and National Center for Biotechnology Information (NCBI) databases. Some ingredients and targets were selected for molecular docking verification. One hour after administering potassium oxonate (300 mg/kg), VGTP (50, 100, and 200 mg/kg/d) was orally administered to HUA mice for 4 weeks. Histopathology and western blotting were performed in renal tissue. Our results showed that VGTP significantly reduced blood urea nitrogen, creatinine, uric acid, and significantly improved the RI and fibrosis of HUA mice. There were 54 active ingredients and 62 targets of HUA-induced RI. Further studies showed that VGTP decreased the expression of Bax, cleaved caspase 3, transforming growth factor-ß (TGF-ß1), CHOP, p-STAT3, and P53, and increased Bcl-2 expression in renal tissue. The related signaling pathways have apoptosis, TGF-ß1, P53 and STAT, and endoplasmic reticulum stress (ERS). In this study, VGTP exerted antihyperuricemic and anti fibrosis effects by regulating the apoptosis and ERS signaling pathways. VGTP is expected to become a drug for combating HUA and RI.


Asunto(s)
Hiperuricemia , Vitis , Animales , Ratones , Hiperuricemia/tratamiento farmacológico , Farmacología en Red , Factor de Crecimiento Transformador beta1 , Simulación del Acoplamiento Molecular , Proteína p53 Supresora de Tumor , Riñón
3.
Sci Rep ; 12(1): 22310, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566291

RESUMEN

Chrysanthemum (Chrysanthemum moriforlium Ramat.) is one of the most popular flowers worldwide, with very high ornamental and economic values. However, the limitations of available DNA molecular markers and the lack of full genomic sequences hinder the study of genetic diversity and the molecular breeding of chrysanthemum. Here, we developed simple sequence repeat (SSR) from the full-length transcriptome sequences of chrysanthemum cultivar 'Hechengxinghuo'. A total of 11,699 SSRs with mono-, di-, tri-, tetra-, penta- and hexanucleotide repeats were identified, of which eight out of eighteen SSR loci identified based on sixteen transcripts participated in carotenoid metabolism or anthocyanin synthesis were validated as polymorphic SSR markers. These SSRs were used to classify 117 chrysanthemum accessions with different flower colors at the DNA and cDNA levels. The results showed that four SSR markers of carotenoid metabolic pathway divided 117 chrysanthemum accessions into five groups at cDNA level and all purple chrysanthemum accessions were in the group III. Furthermore, the SSR marker CHS-3, LCYE-1 and 3MaT may be related to green color and the PSY-1b marker may be related to yellow color. Overall, our work may be provide a novel method for mining SSR markers associated with specific traits.


Asunto(s)
Chrysanthemum , Chrysanthemum/genética , Transcriptoma/genética , ADN Complementario/metabolismo , Repeticiones de Microsatélite/genética , Flores/genética , Flores/metabolismo
4.
Bioresour Technol ; 329: 124853, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33621929

RESUMEN

In this work, nickel ferrite nanoparticles (NiFe2O4 NPs) was prepared to improve hydrogen (H2) production by dark fermentation. Moderate amounts (50-200 mg/L) promoted H2 generation, while excess NiFe2O4 NPs (over 400 mg/L) lowered H2 productivity. The highest H2 yields of 222 and 130 mL/g glucose were obtained in the 100 mg/L (37 °C) and 200 mg/L NiFe2O4 NPs (55 °C) groups, respectively, and the values were 38.6% and 28.3% higher than those in the control groups (37 °C and 55 °C). Soluble metabolites showed that NiFe2O4 NPs enhanced the butyrate pathway, corresponding to the increased abundance of Clostridium butyricum in mesophilic fermentation. The endocytosis of NiFe2O4 NPs indicated that the released iron and nickel favored ferredoxin and hydrogenase synthesis and activity and that NiFe2O4 NPs could act as carriers in intracellular electron transfer. The NPs also optimized microbial community structure and increased the levels of extracellular polymeric substances, leading to increased H2 production.


Asunto(s)
Nanopartículas , Níquel , Suplementos Dietéticos , Fermentación , Compuestos Férricos , Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA