Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 123: 155277, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128396

RESUMEN

BACKGROUND: Septic shock, an extremely dangerous condition that causes impairment of organ function, always largely contributes to mortality in intensive care units. The impact of septic shock-induced organ damage on morbidity and mortality is substantially influenced by myocardial dysfunction. However, it remains unclear whether and in what manner anisodamine (654-1/654-2) ameliorates myocardial dysfunction caused by septic shock. PURPOSE: This study is the pioneering investigation and validation about the protective efficacy of anisodamine (654-1/654-2) against LPS-induced myocardial dysfunction in septic shock rats. It also aims to explore the differences in the underlying molecular mechanisms of both drugs. METHODS: A septic shock model was established in SD rats by after tail vein administration of LPS. 64 rats were distributed into eight groups, such as LPS group, control group, LPS+654-1 group (1.25, 2.5, and 5 mg/kg), and LPS+654-2 group (1.25, 2.5, and 5 mg/kg). The hemodynamics, echocardiography, immunohistochemical analysis, TEM, TUNEL assay, and H&E staining were utilized to assess the septic shock model and myocardial function. Lactic acid, inflammatory markers (IL-1ß, IL-6, and TNF-α), endothelial injure markers (SDC-1, HS and TM) and myocardial injury markers (CK, c-TNT and NT-pro BNP) were assessed using ELISA or biochemical kits. Additionally, the mechanisms of 654-1/654-2 were analyzed using RNA-seq and bioinformatics, and validated using western blotting and RT-PCR. RESULTS: Administration of 654-1/654-2 significantly restored hemodynamics and improved myocardial and endothelial glycocalyx injury in septic shock rats. Furthermore, 654-1/654-2 dose-dependently reduced plasma levels of lactic acid, inflammatory cytokines, and markers of endothelial and myocardial injury. Analyses using RNA-seq, WB and RT-PCR techniques indicated that 654-1/654-2 could mitigate myocardial and endothelial injury by inhibiting the NF-κB and NLRP-3 pathways, and activating the PI3K-AKT pathway. CONCLUSIONS: These findings demonstrated that 654-1/654-2 could alleviate myocardial damage in septic shock rats. Specifically, 654-1 inhibited the NF-κB/NLRP-3 pathway, whereas 654-2 promoted the PI3K-AKT pathway and inhibited the NF-κB pathway, effectively mitigating the inflammatory response and cell apoptosis.


Asunto(s)
Cardiomiopatías , Choque Séptico , Alcaloides Solanáceos , Ratas , Animales , FN-kappa B/metabolismo , Choque Séptico/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Lipopolisacáridos/farmacología , Ratas Sprague-Dawley , Factor de Necrosis Tumoral alfa/metabolismo , Ácido Láctico/farmacología
2.
J Agric Food Chem ; 71(41): 15156-15169, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37800952

RESUMEN

This study was aimed to investigate the therapeutic effect and mechanism of AKHO on 5-fluorouracil (5-FU)-induced intestinal mucositis in mice. Mouse body weight, diarrhea score, and H&E staining were applied to judge the therapeutic effect of AKHO. 16S rDNA and nontargeted metabolomics have been used to study the mechanism. WB, ELISA, and immunohistochemistry were adopted to validate possible mechanisms. The results demonstrated that AKHO significantly reduced diarrhea scores and intestinal damage induced by 5-FU in mice. AKHO lowered the serum levels of LD and DAO, and upregulated the expressions of ZO-1 and occludin in the ileum. Also, AKHO upregulated the abundance of Lactobacillus in the gut and suppressed KEGG pathways such as cortisol synthesis and secretion and arachidonic acid metabolism. Further validation studies indicated that AKHO downregulated the expressions of prostaglandin E2 (PGE2), microsomal prostaglandin E synthase-1 (mPGES-1), and PGE2 receptor EP4, as well as upregulated the expression of glucocorticoid (GC) receptor (GR), leading to improved intestinal epithelial barrier function. Taken together, AKHO elicited protective effects against 5-FU-induced mucositis by regulating the expressions of tight junction proteins via modulation of GC/GR and mPGES-1/PGE2/EP4 pathway, providing novel insights into the utilization and development of this pharmaceutical/food resource.


Asunto(s)
Alpinia , Microbioma Gastrointestinal , Mucositis , Aceites Volátiles , Ratones , Animales , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Dinoprostona , Prostaglandina-E Sintasas/genética , Prostaglandina-E Sintasas/metabolismo , Aceites Volátiles/farmacología , Fluorouracilo/efectos adversos , Diarrea
3.
Pharmacol Res ; 197: 106953, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37804925

RESUMEN

Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1ß, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.


Asunto(s)
Aterosclerosis , Curcumina , Humanos , Células Endoteliales , Curcumina/farmacología , Curcumina/uso terapéutico , Multimorbilidad , FN-kappa B , Fosfatidilinositol 3-Quinasas , Especias
4.
PLoS One ; 10(7): e0133496, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26226139

RESUMEN

UNLABELLED: Fish oil has been used effectively in the treatment of cardiovascular disease via triglyceride reduction and inflammation modulation. This study aimed to assess the effects of fish oil on patients with nonalcoholic fatty liver disease (NAFLD) associated with hyperlipidemia. Eighty participants with NAFLD associated with hyperlipidemia were randomly assigned to consume fish oil (n=40, 4 g/d) or corn oil capsules (n=40, 4 g/d) for 3 months in a double-blind, randomized clinical trial. Blood levels of lipids, glucose and insulin, liver enzymes, kidney parameters and cytokines at baseline and the end of the study were measured. Seventy people finished the trial. Plasma concentrations of eicosapentaenoic acid and docosahexaenoic acid significantly increased in the fish oil group after intervention. After adjustment for age, gender and BMI, fish oil significantly decreased fasting serum concentrations of total cholesterol, triglyceride, apolipoprotein B and glucose (by (mean±SD) 0.49±0.43 mmol/L, 0.58±0.89 mmol/L, 0.28±0.33 g/L and 0.76±0.56 mmol/L, respectively, P<0.05), as well as alanine aminotransferase and γ-glutamyl transpeptidase levels (by (median (interquartile)) 9.0(0.5, 21.5) and 7.0(2.2, 20.0) IU/L, respectively, P<0.05), significantly increased serum adiponectin levels (by 1.29±0.62 µg/mL, P<0.001), and reduced serum levels of tumor necrosis factor α, leukotrienes B4, fibroblast growth factor 21 (FGF21), cytokeratin 18 fragment M30 and prostaglandin E2 (by 1.70±1.18 pg/mL, 0.59±0.28 ng/mL, 121±31 pg/mL, 83±60 IU/L and 10.9±2.3 pg/mL, respectively, P<0.001). Corn oil had no effect except for increasing serum creatinine concentrations by 7.7±8.9 µmol/L (P=0.008). The effects of fish oil on lipids, glucose and γ-glutamyl transpeptidase were positively correlated with the reductions of serum FGF21 and prostaglandin E2 concentrations after adjustment for age, gender and BMI (r = 0.275 to 0.360 and 0.261 to 0.375, respectively, P<0.05). In conclusion, our findings suggest that fish oil can benefit metabolic abnormalities associated with NAFLD treatment. TRIAL REGISTRATION: ChiCTR-TRC-12002380.


Asunto(s)
Glucemia/efectos de los fármacos , Dinoprostona/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Aceites de Pescado/uso terapéutico , Hiperlipidemias/metabolismo , Lípidos/sangre , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Adulto , Suplementos Dietéticos , Ácidos Docosahexaenoicos/metabolismo , Método Doble Ciego , Ácido Eicosapentaenoico/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Hiperlipidemias/sangre , Insulina/sangre , Pruebas de Función Renal/métodos , Pruebas de Función Hepática/métodos , Masculino , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/metabolismo
5.
Zhong Yao Cai ; 34(12): 1848-50, 2011 Dec.
Artículo en Chino | MEDLINE | ID: mdl-22500418

RESUMEN

OBJECTIVE: To study quality standards of 10 batches of Indian of stringbush root decoction pieces with sweat processing and build up the quality standard. METHODS: 10 batches of indian stringbush root decoction pieces with sweat were investigated with TLC. Moisture content, total ash, acid-insoluble ash and extractum were explored. The content of daphnoretin was determined by HPLC. RESULTS: Indian stringbush root decoction pieces with sweat,the moisture content should not pass 14.5%, total ash should not pass 3.5%, acid-insoluble ash should not pass 1.0%, alcohol-soluble extractive should not lower than 9.0%, the content of daphnoretin should not lower than 0.2%. CONCLUSION: Quality control quantization evaluation system of Indian stringbush root decoction pieces with sweat is establishment initial.


Asunto(s)
Cumarinas/análisis , Medicamentos Herbarios Chinos/normas , Sudor/química , Wikstroemia/química , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Raíces de Plantas/química , Control de Calidad , Tecnología Farmacéutica/métodos , Agua/análisis , Wikstroemia/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA