Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36430505

RESUMEN

Phosphate (P) deficiency severely limits the growth and production of plants. Adventitious root development plays an essential role in responding to low phosphorus stress for apple plants. However, the molecular mechanisms regulating adventitious root growth and development in response to low phosphorus stress have remained elusive. In this study, a mutation (C-T) in the coding region of the apple AUXIN/INDOLE-3-ACETIC ACID 27 (IAA27) gene was identified. MdIAA27T-overexpressing transgenic apple improved the tolerance to phosphorus deficiency, which grew longer and denser adventitious roots and presented higher phosphorous content than the control plants under low phosphorus conditions, while the overexpression of MdIAA27C displayed the opposite trend. Moreover, the heterologous overexpression of MdIAA27 in tobacco yielded the same results, supporting the aforementioned findings. In vitro and in vivo assays showed that MdIAA27 directly interacted with AUXIN RESPONSE FACTOR (ARF8), ARF26 and ARF27, which regulated Small Auxin-Up RNA 76 (MdSAUR76) and lateral organ boundaries domain 16 (MdLBD16) transcription. The mutation in IAA27 resulted in altered interaction modes, which in turn promoted the release of positive ARFs to upregulate SAUR76 and LBD16 expression in low phosphorus conditions. Altogether, our studies provide insights into how the allelic variation of IAA27 affects adventitious root development in response to low phosphorus stress.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Fósforo/metabolismo
2.
J Phys Chem Lett ; 13(35): 8236-8244, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36018004

RESUMEN

Violet phosphorus quantum dots (VPQDs) are promising structures for bioimaging, solar cells, LEDs, diode lasers, and transistors due to the quantum confinement effects. Bandgap tuning is important for QDs to adjust their emissions for various applications. Nevertheless, no bandgap tuning of VPQDs has been investigated, since the violet phosphorus has just recently been successfully produced and confirmed. In this work, the bandgap of VPQDs has been demonstrated to be effectively tuned from 2.3 to 3.1 eV by a facile solvothermal path in different solvents to introduce different functional groups. The HOMO-LUMO gaps of VPQDs from different functionalizations have also been calculated by density functional theory to be 2.73, 2.77, 2.74, 2.80, 2.51, and 2.56 eV, respectively, which are well-consistent with the experimental results. Our results provide a simple pathway for bandgap tuning of VPQDs, which can be used for future optoelectronic applications.


Asunto(s)
Puntos Cuánticos , Fósforo , Puntos Cuánticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA