Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 22(1): 308, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35751022

RESUMEN

BACKGROUND: GARP transcription factors perform critical roles in plant development and response to environmental stimulus, especially in the phosphorus (P) and nitrogen (N) sensing and uptake. Spirodela polyrhiza (giant duckweed) is widely used for phytoremediation and biomass production due to its rapid growth and efficient N and P removal capacities. However, there has not yet been a comprehensive analysis of the GRAP gene family in S. polyrhiza. RESULTS: We conducted a comprehensive study of GRAP superfamily genes in S. polyrhiza. First, we investigated 35 SpGARP genes which have been classified into three groups based on their gene structures, conserved motifs, and phylogenetic relationship. Then, we identified the duplication events, performed the synteny analysis, and calculated the Ka/Ks ratio in these SpGARP genes. The regulatory and co-expression networks of SpGARPs were further constructed using cis-acting element analysis and weighted correlation network analysis (WGCNA). Finally, the expression pattern of SpGARP genes were analyzed using RNA-seq data and qRT-PCR, and several NIGT1 transcription factors were found to be involved in both N and P starvation responses. CONCLUSIONS: The study provides insight into the evolution and function of GARP superfamily in S. polyrhiza, and lays the foundation for the further functional verification of SpGARP genes.


Asunto(s)
Araceae , Fósforo , Araceae/genética , Regulación de la Expresión Génica de las Plantas , Nitrógeno/metabolismo , Fósforo/metabolismo , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Cells ; 11(7)2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35406731

RESUMEN

SPX genes play important roles in the coordinated utilization of nitrogen (N) and phosphorus (P) in plants. However, a genome-wide analysis of the SPX family is still lacking. In this study, the gene structure and phylogenetic relationship of 160 SPX genes were systematically analyzed at the genome-wide level. Results revealed that SPX genes were highly conserved in plants. All SPX genes contained the conserved SPX domain containing motifs 2, 3, 4, and 8. The 160 SPX genes were divided into five clades and the SPX genes within the same clade shared a similar motif composition. P1BS cis-elements showed a high frequency in the promoter region of SPXs, indicating that SPX genes could interact with the P signal center regulatory gene Phosphate Starvation Response1 (PHR1) in response to low P stress. Other cis-elements were also involved in plant development and biotic/abiotic stress, suggesting the functional diversity of SPXs. Further studies were conducted on the interaction network of three SpSPXs, revealing that these genes could interact with important components of the P signaling network. The expression profiles showed that SpSPXs responded sensitively to N and P deficiency stresses, thus playing a key regulatory function in P and N metabolism. Furthermore, the expression of SpSPXs under P and N deficiency stresses could be affected by environmental factors such as ABA treatment, osmotic, and LT stresses. Our study suggested that SpSPXs could be good candidates for enhancing the uptake ability of Spirodela polyrhiza for P nutrients in wastewater. These findings could broaden the understanding of the evolution and biological function of the SPX family and offer a foundation to further investigate this family in plants.


Asunto(s)
Araceae , Regulación de la Expresión Génica de las Plantas , Araceae/genética , Araceae/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA