Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Healthc Mater ; 11(10): e2101846, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35114076

RESUMEN

Black phosphorus (BP) nanosheets emerged as promising 2D nanomaterial that have been applied to eradicate antibiotic-resistant bacteria. However, their applications are limited by intrinsic ambient instability. Here, the ε-poly-l-lysine (ε-PL)-engineered BP nanosheets are constructed via simple electrostatic interaction to cater the demand for passivating BP with amplified antibacterial activity. The dual drug-delivery complex named BP@ε-PL can closely anchor onto the surface of bacteria, leading to membrane disintegration. Subsequently, in situ hyperthermia generated by BP under near-infrared (NIR) irradiation can precisely eradicate pathogenic bacteria. In vitro antibacterial studies verify the rapid disinfection ability of BP@ε-PL against Methicillin-resistant Staphylococcus aureus (MRSA) within 15 min. Moreover, ε-PL can serve as an effective protector to avoid chemical degradation of bare BP. The in vivo antibacterial study shows that a 99.4% antibacterial rate in a MRSA skin infection model is achieved, which is accompanied by negligible toxicity. In conclusion, this work not merely provides a new conjecture for protecting the BP, but also opens a novel window for synergistic antibiotic-resistant bacteria therapy based on antimicrobial peptides and 2D photothermal nanomaterial.


Asunto(s)
Hipertermia Inducida , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Péptidos Antimicrobianos , Fósforo
2.
Acta Biomater ; 135: 164-178, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34530140

RESUMEN

Cutaneous melanoma is one of the most common malignant skin cancer with high lethality. Chemotherapy and photothermal therapy are important and extensively studied treatment modalities for melanoma. However, these therapies still face some challenges, which severely restrict their further applications, such as unsatisfactory efficacy of monotherapy, nonspecific uptake and release during drug delivery, and unexpected adverse effects from system administration. Recently, the strategies of collaboration, functional modification, stimuli-responsive design, and topical administration all show great prospect for solving above problems. In this research, a multifunctional nanoparticle-integrated dissolving microneedle drug delivery system was constructed, in which the nanoparticles were prepared based on the framework with the incorporation of photothermal agent (CuS) into Zeolitic imidazolate framework-8 and functionalized by hyaluronic acid. This system can co-load multi-modal drugs, improve specific uptake and distribution of targeted tumor, deliver drug locally, and release drug intelligently and spatiotemporally, thereby promising a low-dose administration with high efficiency. The high inhibiting tumor performance and excellent systematic safety were verified both in vitro and in vivo. Together, this smart design overcame the drawbacks of monotherapy and conventional system administration. We believe the nanoparticle-integrated dissolving microneedles will be in prospect of clinical application for more superficial tumors with further delicate optimization. STATEMENT OF SIGNIFICANCE: Melanoma is one of the most common skin cancers with high lethality. Extensively studied chemotherapy and photothermal therapy still face some challenges, such as the limited therapeutic efficacy and the severe system adverse effects. In order to overcome these drawbacks, the multifunctional nanoparticle-integrated dissolving microneedles (DMNs) were designed. Especially, the nanoparticles could co-load multi-modal drugs, improve specific uptake, and release drug intelligently and spatiotemporally. The microneedles could increase the drug accumulation in tumor, thus achieving excellent therapeutic efficacy and reducing side effects. This system paved the way to a less invasive, more focused and efficient therapeutic strategy for melanoma therapy.


Asunto(s)
Melanoma , Nanopartículas Multifuncionales , Nanopartículas , Neoplasias Cutáneas , Doxorrubicina , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Humanos , Melanoma/tratamiento farmacológico , Fototerapia , Terapia Fototérmica , Neoplasias Cutáneas/tratamiento farmacológico
3.
Carbohydr Polym ; 267: 118194, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34119161

RESUMEN

Allium sativum L. is a widely distributed plant used as a spice, vegetable and medicine. In this study, one novel water-soluble polysaccharide (GBP-1a), with a molecular weight of 15.0 kDa, was isolated from the scape of A. sativum (garlic bolt). GBP-1a consists of galactose, glucose and arabinose at a ratio of 73.29:4.36:1.70. It has a backbone, which is composed of 1,4-linked Galp, with 1,2,6-linked Galp branches and 1-linked Glcp residue. In addition, the anti-oxidant activities of GBP-1a, as well as the two main polysaccharide fractions on ABTS radicals, metal ions and superoxide anion radicals, were evaluated in vitro. This study added new data to the study of polysaccharides from garlic bolt.


Asunto(s)
Depuradores de Radicales Libres/química , Ajo/química , Polisacáridos/química , Secuencia de Carbohidratos , Depuradores de Radicales Libres/aislamiento & purificación , Peso Molecular , Polisacáridos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA