Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
RSC Adv ; 12(38): 25068-25080, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36199871

RESUMEN

Multi-drug-resistant microbial pathogens are a serious global health problem. New compounds with antibacterial activity serve as good candidates for developing novel antibacterial drugs which is very urgent and important. In this work, based on the unique scaffold of indirubin, an active ingredient of traditional Chinese medicine formulation Danggui Luhui Wan, we synthesized 29 indirubin-3'-monoximes and preliminarily evaluated their antibacterial activities. The antibacterial activity results demonstrated that the synthesized indirubin-3'-monoximes 5a-5z and 5aa-5ad displayed good potency against S. aureus ATCC25923 (MIC = 0.4-25.6 µg mL-1). Among them, we found that the 5-F, 5-Cl and 7-CF3 substituted indirubin-3'-monoximes 5r, 5s and 5aa also showed better antibacterial efficiency for S. aureus (MICs up to 0.4 µg mL-1) than the prototype natural product indirubin (MIC = 32 µg mL-1). More importantly, indirubin-3'-monoxime 5aa has certain synergistic effect with levofloxacin against clinic multidrug-resistant S. aureus (fractional inhibitory concentration index: 0.375). In addition, relevant experiments including electron microscopy observations, PI staining and the leakage of extracellular potassium ions and nucleic acid (260 nm) have been performed after treating S. aureus with indirubin-3'-monoxime 5aa, and the results revealed that indirubin-3'-monoximes could increase the cell membrane permeability of S. aureus. Although indirubin-3'-monoxime 5aa showed some cytotoxicity toward SH-SY5Y cells relative to compounds 5r and 5s, the skin irritation test of male mice after shaving showed that compound 5aa at a concentration of 12.8 µg mL-1 had no toxicity to mouse skin, and it could be used as a leading compound for skin antibacterial drugs.

3.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955553

RESUMEN

Potato common scab (CS) is a worldwide soil-borne disease that severely reduces tuber quality and market value. We observed that foliar application of tryptophan (Trp) could induce resistance against CS. However, the mechanism of Trp as an inducer to trigger host immune responses is still unclear. To facilitate dissecting the molecular mechanisms, the transcriptome of foliar application of Trp and water (control, C) was compared under Streptomyces scabies (S) inoculation and uninoculation. Results showed that 4867 differentially expressed genes (DEGs) were identified under S. scabies uninoculation (C-vs-Trp) and 2069 DEGs were identified under S. scabies inoculation (S-vs-S+Trp). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that Trp induced resistance related to the metabolic process, response to stimulus, and biological regulation. As phytohormone metabolic pathways related to inducing resistance, the expression patterns of candidate genes involved in salicylic acid (SA) and jasmonic acid/ethylene (JA/ET) pathways were analyzed using qRT-PCR. Their expression patterns showed that the systemic acquired resistance (SAR) and induced systemic resistance (ISR) pathways could be co-induced by Trp under S. scabies uninoculation. However, the SAR pathway was induced by Trp under S. scabies inoculation. This study will provide insights into Trp-induced resistance mechanisms of potato for controlling CS, and extend the application methods of Trp as a plant resistance inducer in a way that is cheap, safe, and environmentally friendly.


Asunto(s)
Escabiosis , Solanum tuberosum , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Solanum tuberosum/genética , Transcriptoma , Triptófano/genética
4.
Int J Mol Sci ; 22(21)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34769466

RESUMEN

Thaxtomin A (TA) is a phytotoxin secreted by Streptomyces scabies that causes common scab in potatoes. However, the mechanism of potato proteomic changes in response to TA is barely known. In this study, the proteomic changes in potato leaves treated with TA were determined using the Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) technique. A total of 693 proteins were considered as differentially expressed proteins (DEPs) following a comparison of leaves treated with TA and sterile water (as a control). Among the identified DEPs, 460 and 233 were upregulated and downregulated, respectively. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, many DEPs were found to be involved in defense and stress responses. Most DEPs were grouped in carbohydrate metabolism, amino acid metabolism, energy metabolism, and secondary metabolism including oxidation-reduction process, response to stress, plant-pathogen interaction, and plant hormone signal transduction. In this study, we analyzed the changes in proteins to elucidate the mechanism of potato response to TA, and we provided a molecular basis to further study the interaction between plant and TA. These results also offer the option for potato breeding through analysis of the resistant common scab.


Asunto(s)
Indoles/farmacología , Piperazinas/farmacología , Proteínas de Plantas/efectos de los fármacos , Proteoma/efectos de los fármacos , Solanum tuberosum/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/inmunología , Indoles/aislamiento & purificación , Piperazinas/aislamiento & purificación , Inmunidad de la Planta/efectos de los fármacos , Inmunidad de la Planta/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Solanum tuberosum/genética , Solanum tuberosum/inmunología , Solanum tuberosum/metabolismo , Streptomyces/química
5.
Chem Pharm Bull (Tokyo) ; 68(7): 613-617, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32611998

RESUMEN

Although anthraquinone derivatives possess significant antitumor activity, most of them also displayed those side effects like cardiotoxicity, mainly owing to their inhibition of topoisomerase II of DNA repair mechanisms. Our raised design strategy by switching therapeutic target from topoisomerase II to histone deacetylase (HDAC) has been applied to the design of anthraquinone derivatives in current study. Consequently, a series of novel HDAC inhibitors with a tricylic diketone of anthraquinone as a cap group have been synthesized. After screening and evaluation, compounds 4b, 4d, 7b and 7d have displayed the comparable inhibition in enzymatic activity and cell proliferation than that of Vorinostat (SAHA). Notably, compound 4b showed certain selectivity of antiproliferative effects on cancer cell lines over non-cancer cell lines.


Asunto(s)
Antraquinonas/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Antraquinonas/síntesis química , Antraquinonas/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Reparación del ADN , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Estructura Molecular , Relación Estructura-Actividad
6.
Chem Biol Drug Des ; 82(1): 12-21, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23786349

RESUMEN

Microtubules are considered as important targets of anticancer therapy. Podophyllotoxin and its structural derivative are major microtubule-interfering agents with potent anticancer activity. In this study, we reported the anticancer effects of 10 representative podophyllotoxin derivatives on a panel of four human cancer cell lines. Deoxypodophyllotoxin (6b) and ß-apopicropodophyllotoxin (6g) elicited strong antiproliferative effects (IC50) at a range of 0.0073-0.14 µM. Direct tubulin depolymerization assay in vitro was also performed. Results showed that that the two compounds can inhibit microtubule polymerization. Experimental measurements were also supported by molecular dynamic simulations, which showed that the two active compounds formed interactions with the colchicine-binding site of the tubulin protein. Our results helped us understand the nature of tubulin binding and determine the core design of a new series of potent inhibitors of tubulin polymerization.


Asunto(s)
Antineoplásicos/química , Podofilotoxina/química , Moduladores de Tubulina/química , Tubulina (Proteína)/química , Antineoplásicos/toxicidad , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos , Células HeLa , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Simulación del Acoplamiento Molecular , Podofilotoxina/análogos & derivados , Podofilotoxina/toxicidad , Termodinámica , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA