Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 44(10): 5788-5799, 2023 Oct 08.
Artículo en Chino | MEDLINE | ID: mdl-37827794

RESUMEN

Soil microbial carbon (C), nitrogen (N), and phosphorus (P) nutrient requirements and metabolic limitations are closely related to the availability of environmental nutrients. However, it is unclear how manure and chemical fertilization shift nutrient limitations for microbes in terms of the soil enzymatic stoichiometry in an apple orchard. Therefore, based on the long-term experiment located in an apple orchard established in 2008, this study applied the theory and method of soil enzyme stoichiometry to systematically investigate the effects of the combined application of manure and chemical fertilizers on soil C, N, and P turnover-related enzyme activities (ß-1,4-glucosidase, BG; leucine aminopeptidase, NAG; ß-1,4-N-acetylglucosaminidase, LAP; and acid or alkaline phosphatase, PHOS) and their stoichiometric characteristics and analyzed their relationships with environmental factors and microbial carbon use efficiency. The experiment was designed with four treatments, such as, no fertilization input as the control (CK), single application of chemical fertilizer (NPK), combined application of manure and chemical fertilizer (MNPK), and single application of manure (M). The results revealed that:① at different growth stages of fruit trees, the soil microbial biomass C (microC) content of manure fertilizer treatments (MNPK and M) was significantly higher than that of no manure fertilizer treatments (CK and NPK). The content of microbial biomass N (microN) in the NPK, MNPK, and M treatments increased by 89%, 269%, and 213%, respectively, compared with that in CK (P<0.05). ② Compared with those in the fertilization treatments, CK had higher leaf N and P contents (29.8 g·kg-1 and 2.17 g·kg-1) at the germination stage, and the leaf P content at the germination stage alone was significantly negatively correlated with soil available phosphorus (AP) content. ③ Soil enzyme stoichiometry analysis demonstrated that all data points in this study were above the 1:1 line, indicating that microbial communities had a strong phosphorus limitation. The range of vector length and angle was 0.56-0.79 and 59.3°-67.7°, respectively, in the growth period of fruit trees, and the vector angle was >45° in this study, which also reflected the strong phosphorus limitation of microorganisms. ④ RDA and random forest model analysis showed that organic carbon and available nitrogen (AN) were the main physical and chemical factors affecting vector length; AP, AN, and soil water content were the main physical and chemical factors affecting vector angle. Combined with SEM analysis, AN and dissolved organic carbon (DOC) directly affected microC and microN, AP directly affected microP and microN, DOC and AP directly affected vector length, and AP and microN directly affected vector angle. In addition, microbial carbon utilization was positively correlated with vector length and negatively correlated with vector angle. In summary, the combined application of manure and chemical fertilizers regulated microbial carbon and phosphorus metabolism by affecting soil carbon and phosphorus content at different growth stages of fruit trees, thereby affecting microbial carbon utilization. This study provides a scientific basis for manure and chemical fertilizers to improve soil quality and maintain soil health.


Asunto(s)
Malus , Suelo , Suelo/química , Fertilizantes/análisis , Carbono/análisis , Estiércol , Microbiología del Suelo , Estaciones del Año , Nitrógeno/análisis , Fósforo/análisis , Agricultura/métodos
2.
Int J Biol Macromol ; 214: 220-229, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35714865

RESUMEN

Silver nanoparticles (AgNPs) were widely used in the antibacterial field because of their excellent antibacterial properties. In this study, we used hesperidin and pectin as reductants and stabilizers, and prepared uniform and stable Hesperidin-Pectin AgNPs (HP-AgNPs) by a simple microwave-assisted process. Increasing the proportion of hesperidin, P-AgNPs, HP-AgNPs1, HP-AgNPs2 and H-AgNPs were obtained respectively. With the increase of hesperidin ratio, the mean particle size and zeta potential increased gradually. Fourier transform infrared spectroscopy (FTIR) analysis showed that Ag+ was reduced by hesperidin and pectin. Antibacterial tests showed that HP-AgNPs2 showed the MIC values of 66.7 µg/mL against E. coli. In addition, HP-AgNPs2 was selected to clarify its antibacterial mechanism against E. coli. Morphological experiments showed that HP-AgNPs2 stress caused damage to the cell wall of E. coli, as well as leakage of its contents and an increase in reactive oxygen species (ROS). On the other hand, the release of Ag+ during cell co-culture was studied and the results showed that most of the Ag+ released was taken up by E. coli. The synergistic effect of hesperidin and pectin resulted in a significant enhancement of the antibacterial properties of AgNPs. These preliminary data suggest that HP-AgNPs has good antibacterial activity and may be developed as an effective antibacterial nanomaterial.


Asunto(s)
Hesperidina , Nanopartículas del Metal , Antibacterianos/química , Escherichia coli , Hesperidina/farmacología , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana , Pectinas/farmacología , Plata/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA