Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Tradit Chin Med ; 41(6): 919-926, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34939388

RESUMEN

OBJECTIVE: To investigate the potential mechanism of the vascular remodeling effect and provide additional information about anti-hypertension activity of Fufang Qima capsule. METHODS: Spontaneous hypertensive rats (SHRs) were used to study the underlying mechanism of the anti-hypertension activity of QM. In this study, SHRs were randomly divided into 5 groups: model group, Telmisartan group (7.2 mg/kg, p.o.), and three QM groups (0.9298, 1.8596, and 3.7192 g/kg, p.o.). Wistar Kyoto rats (WKY) were used as normal control group. Blood pressure (BP), aorta, perivascular adipose tissue (PVAT) histology were investigated to evaluate the effect of QM. Nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) phosphorylation were measured. Adiponectin (APN) secretion, as well as APN signal pathway proteins including APN, adiponectin receptors (R1 and R2) and adenosine 5'-monophosphate-activated protein kinase (AMPK) were all analyzed. RESULTS: QM significantly reduced BP and ameliorated the vascular pathological change, i.e. intima media thicken and collagen fiber hyperplasia. Meanwhile, QM increased concentration of NO and the phosphorylation of eNOS in the aorta. The anti-hypertensive and endothelia-protective effect of QM could be attributed to activating APN/ AMPK pathway by up-regulating the expression of APN in PVAT and APN Receptor 2, AMPKα and phosphorylated AMPKα in the aorta. CONCLUSION: The QM alleviation effect mechanism for primary hypertension was via modulating the APN/AMPK signal pathway.


Asunto(s)
Antihipertensivos , Hipertensión , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato , Adiponectina/genética , Animales , Antihipertensivos/farmacología , Hipertensión/tratamiento farmacológico , Ratas
2.
Artículo en Inglés | MEDLINE | ID: mdl-32419802

RESUMEN

Our aim was to study whether radial pulse wave signals can improve the risk prediction of incident hypertension and are associated with its concomitant metabolic risk factors beyond the traditional cardiovascular risk factor Ba-PWV. By enrolling 523 Chinese subjects in this study, linear and stepwise regression analysis was performed to assess the association of radial artery pulse wave signals and Ba-PWV with blood pressure and its related metabolic risk factors such as fasting plasma glucose (FPG), total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and uric acid (UA). The area under the receiver-operating characteristic curve (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI) were calculated by risk assessment plot to compare the discriminative ability among models with and without radial artery pulse wave signals. After adjusting related confounding factors, radial artery pulse wave variable h 3/h 1 was selected as the sensitive influential factor for blood pressure. Moreover, a new model with h 3/h 1 had a higher AUC than the reference model without it (0.86 vs 0.84; P=0.030). And the NRI and IDI for the new model was 50.0% (P=0.017) and 3.16% (P=0.044), respectively. In addition to Ba-PWV, we found that the decrease of t 4, t 5, and h 5 might be associated with higher FPG, TC, LDL-C, and UA and lower HDL-C. This research might provide a valuable additional tool for remote wearable monitoring of radial artery pulse wave signals in hypertension risk evaluation and management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA