Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 287(30): 25086-97, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22584571

RESUMEN

Lipidomic regulation of mitochondrial cardiolipin content and molecular species composition is a prominent regulator of bioenergetic efficiency. However, the mechanisms controlling cardiolipin metabolism during health or disease progression have remained elusive. Herein, we demonstrate that cardiac myocyte-specific transgenic expression of cardiolipin synthase results in accelerated cardiolipin lipidomic flux that impacts multiple aspects of mitochondrial bioenergetics and signaling. During the postnatal period, cardiolipin synthase transgene expression results in marked changes in the temporal maturation of cardiolipin molecular species during development. In adult myocardium, cardiolipin synthase transgene expression leads to a marked increase in symmetric tetra-18:2 molecular species without a change in total cardiolipin content. Mechanistic analysis demonstrated that these alterations result from increased cardiolipin remodeling by sequential phospholipase and transacylase/acyltransferase activities in conjunction with a decrease in phosphatidylglycerol content. Moreover, cardiolipin synthase transgene expression results in alterations in signaling metabolites, including a marked increase in the cardioprotective eicosanoid 14,15-epoxyeicosatrienoic acid. Examination of mitochondrial bioenergetic function by high resolution respirometry demonstrated that cardiolipin synthase transgene expression resulted in improved mitochondrial bioenergetic efficiency as evidenced by enhanced electron transport chain coupling using multiple substrates as well as by salutary changes in Complex III and IV activities. Furthermore, transgenic expression of cardiolipin synthase attenuated maladaptive cardiolipin remodeling and bioenergetic inefficiency in myocardium rendered diabetic by streptozotocin treatment. Collectively, these results demonstrate the unanticipated role of cardiolipin synthase in maintaining physiologic membrane structure and function even under metabolic stress, thereby identifying cardiolipin synthase as a novel therapeutic target to attenuate mitochondrial dysfunction in diabetic myocardium.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Metabolismo Energético , Proteínas de la Membrana/metabolismo , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Fosfatidilgliceroles/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Fosfatidilgliceroles/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
2.
Anal Chem ; 83(11): 4243-50, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21500847

RESUMEN

Identification and quantification of unsaturated fatty acid (FA) isomers in a biological system are significant in the study of lipid metabolism and catabolism, membrane biophysics, and pathogenesis of diseases but are challenging in lipidomics. We developed a novel approach for identification and quantitation of unsaturated FA isomers by exploiting two facts: (1) unsaturated FA anions yield fragment ion(s) from loss of CO(2) or H(2)O from the anions upon collision-induced dissociation; and (2) the fragment ions yielded from discrete FA isomers have distinct profiles of the fragment ion intensity vs. collision conditions. These distinct profiles likely result from the differential interactions of the negative charge of the fragment ion with the electron clouds of the double bonds due to their different distances in discrete FA isomers. The novel approach was also extended to analyze the double bond isomers of FA chains present in phospholipids by multistage tandem mass spectrometry. Collectively, we developed a new approach for identification and quantification of the double bond isomers of endogenous FA species or FA chains present in intact phospholipid species. We believe that this approach should further advance the lipidomic power for identification of the biochemical mechanisms underlying metabolic diseases.


Asunto(s)
Ácidos Grasos Insaturados/análisis , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Dióxido de Carbono/metabolismo , Grasas de la Dieta , Isomerismo , Ratones , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA