Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pain ; 25(4): 1024-1038, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37918469

RESUMEN

Caffeine consumption inhibits acupuncture analgesic effects by blocking adenosine signaling. However, existing evidence remains controversial. Hence, this study aimed to examine the adenosine A1 receptor (A1R) role in moderate-dose caffeine-induced abolishing effect on acupuncture analgesia using A1R knockout mice (A1R-/-). We assessed the role of A1R in physiological sensory perception and its interaction with caffeine by measuring mechanical and thermal pain thresholds and administering A1R and adenosine 2A receptor antagonists in wild-type (WT) and A1R-/- mice. Formalin- and complete Freund's adjuvant (CFA)-induced inflammatory pain models were recruited to explore moderate-dose caffeine effect on pain perception and acupuncture analgesia in WT and A1R-/- mice. Moreover, a C-fiber reflex electromyogram in the biceps femoris was conducted to validate the role of A1R in the caffeine-induced blockade of acupuncture analgesia. We found that A1R was dispensable for physiological sensory perception and formalin- and CFA-induced hypersensitivity. However, genetic deletion of A1R impaired the antinociceptive effect of acupuncture in A1R-/- mice under physiological or inflammatory pain conditions. Acute moderate-dose caffeine administration induced mechanical and thermal hyperalgesia under physiological conditions but not in formalin- and CFA-induced inflammatory pain. Moreover, caffeine significantly inhibited electroacupuncture (EA) analgesia in physiological and inflammatory pain in WT mice, comparable to that of A1R antagonists. Conversely, A1R deletion impaired the EA analgesic effect and decreased the caffeine-induced inhibitory effect on EA analgesia in physiological conditions and inflammatory pain. Moderate-dose caffeine administration diminished the EA-induced antinociceptive effect by blocking A1R. Overall, our study suggested that caffeine consumption should be avoided during acupuncture treatment. PERSPECTIVE: Moderate-dose caffeine injection attenuated EA-induced antinociceptive effect in formalin- and CFA-induced inflammatory pain mice models by blocking A1R. This highlights the importance of monitoring caffeine intake during acupuncture treatment.


Asunto(s)
Analgesia por Acupuntura , Cafeína , Animales , Ratones , Adenosina , Analgésicos/farmacología , Analgésicos/uso terapéutico , Cafeína/efectos adversos , Formaldehído , Ratones Noqueados , Dolor/tratamiento farmacológico , Dolor/inducido químicamente , Receptor de Adenosina A1/metabolismo , Antagonistas del Receptor de Adenosina A1
2.
Chin J Integr Med ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37999886

RESUMEN

OBJECTIVE: To investigate the effects and mechanisms of olfactory three-needle (OTN) electroacupuncture (EA) stimulation of the olfactory system on cognitive dysfunction, synaptic plasticity, and the gut microbiota in senescence-accelerated mouse prone 8 (SAMP8) mice. METHODS: Thirty-six SAMP8 mice were randomly divided into the SAMP8 (P8), SAMP8+OTN (P8-OT), and SAMP8+nerve transection+OTN (P8-N-OT) groups according to a random number table (n=12 per group), and 12 accelerated senescence-resistant (SAMR1) mice were used as the control (R1) group. EA was performed at the Yintang (GV 29) and bilateral Yingxiang (LI 20) acupoints of SAMP8 mice for 4 weeks. The Morris water maze test, transmission electron microscopy, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, Nissl staining, Golgi staining, Western blot, and 16S rRNA sequencing were performed, respectively. RESULTS: Compared with the P8 group, OTN improved the cognitive behavior of SAMP8 mice, inhibited neuronal apoptosis, increased neuronal activity, and attenuated hippocampal synaptic dysfunction (P<0.05 or P<0.01). Moreover, the expression levels of synaptic plasticity-related proteins N-methyl-D-aspartate receptor 1 (NMDAR1), NMDAR2B, synaptophysin (SYN), and postsynaptic density protein-95 (PSD95) in hippocampus were increased by OTN treatment (P<0.05 or P<0.01). Furthermore, OTN greatly enhanced the brain-derived neurotrophic factor (BDNF)/cAMP-response element binding (CREB) signaling and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling compared with the P8 group (P<0.05 or P<0.01). However, the neuroprotective effect of OTN was attenuated by olfactory nerve truncation. Compared with the P8 group, OTN had a very limited effect on the fecal microbial structure and composition of SAMP8 mice, while specifically increased the genera Oscillospira and Sutterella (P<0.05). Interestingly, the P8-N-OT group showed an abnormal fecal microbiota with higher microbial α-diversity, Firmicutes/Bacteroidetes ratio and pathogenic bacteria (P<0.05 or P<0.01). CONCLUSIONS: OTN improved cognitive deficits and hippocampal synaptic plasticity by stimulating the olfactory nerve and activating the BDNF/CREB and PI3K/AKT/mTOR signaling pathways. Although the gut microbiota was not the main therapeutic target of OTN for Alzheimer's disease, the olfactory nerve was essential to maintain the homeostasis of gut microbiota.

3.
J Integr Neurosci ; 20(1): 55-65, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33834691

RESUMEN

Synaptic dysfunction and neuronal loss are related to cognitive impairment of Alzheimer's disease. Recent evidence indicates that regulating the phosphatidylinositol 3-Kinase (PI3K)/AKT/GSK-3ß pathway is a therapeutic strategy for improving synaptic plasticity in Alzheimer's disease. Here, we investigated "olfactory three-needle" effects on synaptic function and the PI3K/AKT/GSK-3ß signaling pathway in ß-amyloid1-42 (Aß1-42)-induced Alzheimer's disease rats. A three-needle olfactory bulb insertion for 28 days alleviated Aß1-42-induced Alzheimer's disease rats' cognitive impairment as assessed by performance in the Morris water maze test. Furthermore, the three-needle electrode inhibited neuro-apoptosis and neuro-inflammation. It significantly upregulated the protein expression of postsynaptic density protein 95, synaptophysin, and GAP43, indicating a protective effect on hippocampal synaptic plasticity. Additionally, the activation level of PI3K/AKT signaling and the phosphorylation inactivation of GSK-3ß were significantly enhanced by the "olfactory three-needle". Our findings suggested that the three-needle acupuncture is a potential alternative to improve synaptic plasticity and neuronal survival of Alzheimer's disease brain in rodents.


Asunto(s)
Terapia por Acupuntura , Enfermedad de Alzheimer/terapia , Apoptosis/fisiología , Disfunción Cognitiva/terapia , Inflamación/terapia , Plasticidad Neuronal/fisiología , Bulbo Olfatorio , Transducción de Señal/fisiología , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/complicaciones , Péptidos beta-Amiloides/farmacología , Animales , Conducta Animal/fisiología , Disfunción Cognitiva/etiología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Proteína Oncogénica v-akt/metabolismo , Fragmentos de Péptidos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA