Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Nutr Food Res ; 67(1): e2200597, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36382553

RESUMEN

SCOPE: Hepatic steatosis is a major health issue that can be attenuated by a healthy diet. This study investigates the effects and molecular mechanisms of butyrate, a dietary fiber metabolite of gut microbiota, on lipid metabolism in hepatocytes. METHODS AND RESULTS: This study examines the effects of butyrate (0-8 mM) on lipid metabolism in primary hepatocytes. The results show that butyrate (2 mM) consistently inhibits lipogenic genes and activates lipid oxidation-related gene expression in hepatocytes. Furthermore, butyrate modulates lipid metabolism genes, reduces fat droplet accumulation, and activates the calcium/calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 1 (HDAC1)-cyclic adenosine monophosphate response element binding protein (CREB) signaling pathway in the primary hepatocytes and liver of wild-type (WT) mice, but not in G-protein-coupled receptor 41 (GPR41) knockout and 43 (GPR43) knockout mice. This suggests that butyrate regulated hepatic lipid metabolism requires GPR41 and GPR43. Finally, the study finds that dietary butyrate supplementation (5%) ameliorates hepatic steatosis and abnormal lipid metabolism in the liver of mice fed a high-fat and fiber-deficient diet for 15 weeks. CONCLUSION: This work reveals that butyrate improves hepatic lipid metabolism through the GPR41/43-CaMKII/HDAC1-CREB pathway, providing support for consideration of butyrate as a dietary supplement to prevent the progression of NAFLD induced by the Western-style diet.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Butiratos/farmacología , Butiratos/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/farmacología , Dieta , Dieta Alta en Grasa/efectos adversos , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo
2.
Life Sci ; 257: 118036, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32622949

RESUMEN

AIMS: Anti-obesity effects and improved leptin sensitivity from n-3 polyunsaturated fatty acids (n-3 PUFAs) have been reported in diet-induced obese animals. This study sought to determine the beneficial central effects and mechanism of docosahexaenoic acid (DHA, 22:6 n-3) in high-fat (HF) diet fed mice. MAIN METHODS: Male C57BL/6J mice were given HF diet with or without intracerebroventricular (icv) injection of docosahexaenoic acid (DHA, 22:6 n-3) for two days. Central leptin sensitivity, hypothalamic inflammation, leptin signaling molecules and tyrosine hydroxylase (TH) were examined by central leptin sensitivity test and Western blot. Furthermore, the expression of hepatic genes involved in lipid metabolism was examined by RT-PCR. KEY FINDINGS: We found that icv administration of DHA not only reduced energy intake and body weight gain but also corrected the HF diet-induced hypothalamic inflammation. DHA decreased leptin signaling inhibitor SOCS3 and improved the leptin JAK2-Akt signaling pathways in the hypothalamus. Furthermore, icv administration of DHA improved the effects of leptin in the regulation of mRNA expression of enzymes related to lipogenesis, fatty acid ß-oxidation, and cholesterol synthesis in the liver. DHA increased leptin-induced activation of TH in the hypothalamus. SIGNIFICANCE: Therefore, increasing central DHA concentration may prevent the deficit of hypothalamic regulation, which is associated with disorders of energy homeostasis in the liver as a result of a high-fat diet.


Asunto(s)
Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Leptina/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Ingestión de Energía/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Inflamación/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Transducción de Señal/efectos de los fármacos
3.
J Neuroinflammation ; 17(1): 77, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32127019

RESUMEN

BACKGROUND: Western pattern diets induce neuroinflammation and impair cognitive behavior in humans and animals. Neuroinflammation and cognitive impairment have been associated with microbiota dysbiosis, through the gut-brain axis. Furthermore, microbiota-accessible carbohydrates (MACs) found in dietary fiber are important in shaping the microbial ecosystem and have the potential to improve the gut-brain-axis. However, the effects of MACs on neuroinflammation and cognition in an obese condition have not yet been investigated. The present study aimed to evaluate the effect of MACs on the microbiota-gut-brain axis and cognitive function in obese mice induced by a high-fat and fiber deficient (HF-FD) diet. METHODS: C57Bl/6 J male mice were fed with either a control HF-FD or a HF-MAC diet for 15 weeks. Moreover, an additional group was fed with the HF-MAC diet in combination with an antibiotic cocktail (HF-MAC + AB). Following the 15-week treatment, cognitive behavior was investigated; blood, cecum content, colon, and brain samples were collected to determine metabolic parameters, endotoxin, gut microbiota, colon, and brain pathology. RESULTS: We report MACs supplementation prevented HF-FD-induced cognitive impairment in nesting building and temporal order memory tests. MACs prevented gut microbiota dysbiosis, including increasing richness, α-diversity and composition shift, especially in Bacteroidetes and its lower taxa. Furthermore, MACs increased colonic mucus thickness, tight junction protein expression, reduced endotoxemia, and decreased colonic and systemic inflammation. In the hippocampus, MACs suppressed HF-FD-induced neuroglia activation and inflammation, improved insulin IRS-pAKT-pGSK3ß-pTau synapse signaling, in addition to the synaptic ultrastructure and associated proteins. Furthermore, MACs' effects on improving colon-cognitive parameters were eliminated by wide spectrum antibiotic microbiota ablation. CONCLUSIONS: These results suggest that MACs improve cognitive impairments via the gut microbiota-brain axis induced by the consumption of an HF-FD. Supplemental MACs to combat obesity-related gut and brain dysfunction offer a promising approach to prevent neurodegenerative diseases associated with Westernized dietary patterns and obesity.


Asunto(s)
Disfunción Cognitiva/etiología , Dieta Alta en Grasa/efectos adversos , Fibras de la Dieta/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/complicaciones , Animales , Metabolismo de los Hidratos de Carbono , Carbohidratos , Suplementos Dietéticos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroinmunomodulación/efectos de los fármacos
4.
Mol Nutr Food Res ; 62(21): e1800422, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30152105

RESUMEN

SCOPE: A high-fat, but low-fiber, diet is associated with obesity and cognitive dysfunction, while dietary fiber supplementation can improve cognition. METHODS AND RESULTS: This study examines whether dietary fibers, galacto-oligosaccharides (GOS) and resistant starch (RS), could prevent high-fat (HF)-diet-induced alterations in neurotransmitter receptor densities in brain regions associated with cognition and appetite. Rats are fed a HF diet, HF diet with GOS, HF diet with RS, or a low-fat (LF, control) diet for 4 weeks. Cannabinoid CB1 (CB1R) and 5HT1A (5HT1A R) and 5-HT2A (5HT2A R) receptor binding densities are examined. In the hippocampus and hypothalamus, a HF diet significantly increases CB1R binding, while HF + GOS and HF + RS diets prevented this increase. HF diet also increases hippocampal and hypothalamic 5-HT1A R binding, while HF + GOS and HF + RS prevented the alterations. Increased 5-HT2A binding is prevented by HF + GOS and HF + RS in the medial mammillary nucleus. CONCLUSIONS: These results demonstrate that increased CB1R, 5-HT1A R and 5-HT2A R induced by a HF diet can be prevented by GOS and RS supplementation in brain regions involved in cognition and appetite. Therefore, increased fiber intake may have beneficial effects on improving learning and memory, as well as reducing excessive appetite, during the chronic consumption of a HF (standard Western) diet.


Asunto(s)
Apetito/efectos de los fármacos , Encéfalo/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Oligosacáridos/farmacología , Almidón/farmacología , Animales , Apetito/fisiología , Encéfalo/metabolismo , Quimiocina CCL2/sangre , Trastornos del Conocimiento/prevención & control , Fibras de la Dieta/farmacología , Suplementos Dietéticos , Ingestión de Energía/efectos de los fármacos , Masculino , Oligosacáridos/química , Ratas Wistar , Receptor Cannabinoide CB1/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo
5.
Sci Rep ; 7(1): 12203, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28939875

RESUMEN

A high-fat (HF) diet alters gut microbiota and promotes obesity related inflammation and cognitive impairment. Teasaponin is the major active component of tea, and has been associated with anti-inflammatory effects and improved microbiota composition. However, the potential protective effects of teasaponin, against HF diet-induced obesity and its associated alteration of gut microbiota, inflammation and cognitive decline have not been studied. In this study, obesity was induced in C57BL/6 J male mice by feeding a HF diet for 8 weeks, followed by treatment with oral teasaponin (0.5%) mixed in HF diet for a further 6 weeks. Teasaponin treatment prevented the HF diet-induced recognition memory impairment and improved neuroinflammation, gliosis and brain-derived neurotrophic factor (BDNF) deficits in the hippocampus. Furthermore, teasaponin attenuated the HF diet-induced endotoxemia, pro-inflammatory macrophage accumulation in the colon and gut microbiota alterations. Teasaponin also improved glucose tolerance and reduced body weight gain in HF diet-induced obese mice. The behavioral and neurochemical improvements suggest that teasaponin could limit unfavorable gut microbiota alterations and cognitive decline in HF diet-induced obesity.


Asunto(s)
Camellia sinensis/química , Disfunción Cognitiva/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/tratamiento farmacológico , Saponinas/administración & dosificación , Administración Oral , Animales , Conducta Animal/efectos de los fármacos , Disfunción Cognitiva/etiología , Disfunción Cognitiva/patología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Endotoxemia , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Obesidad/etiología , Aumento de Peso/efectos de los fármacos
6.
Brain Res ; 1657: 262-268, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28017669

RESUMEN

The critical factor considered in a depression induced by diabetes is the inflammation eliciting hippocampal, amygdala and thalamic neuronal injury. Therefore, inhibiting inflammatory reactions in the brain and reducing neuronal injury can alleviate depression in rodents suffering from diabetes mellitus. The oral administration of astaxanthin has been employed in emotional disorders and diabetic complications due to its anti-depressant, anti-inflammatory and anti-apoptotic functions. However, it has not been reported whether astaxanthin can improve diabetes-related depression-like behavior, and its potential mechanisms have not been elucidated. The objective of the present study is to elucidate the effect of astaxanthin on depression in diabetic mice and to understand the underlying molecular mechanisms. In this study, experimental diabetic mice were given a single intraperitoneal injection of streptozotocin (STZ, 150mg/kg, dissolved in citrate buffer) after fasting for 12h. The diabetic model was assessed 72h after STZ injection, and mice with a fasting blood glucose level more than or equal to 16.7mmol/L were used in this study, and oral astaxanthin (25mg/kg) was provided uninterrupted for ten weeks. Depression-like behavior was evaluated by the tail suspension test (TST) and forced swimming test (FST). The glial fibrillary acidic protein (GFAP) and cleaved caspase-3-positive cells were measured by immunohistochemistry, and the western blotting was used to test the protein levels of interleukin-6 (IL-6), interleukin-1ß (IL-1ß) and cyclooxygenase (COX-2). The results showed that astaxanthin had an anti-depressant effect on diabetic mice. Furthermore, we observed that astaxanthin significantly reduced the number of GFAP-positive cells in the hippocampus and hypothalamus, and also the expression of cleaved caspase-3 in the hippocampus, amygdala and hypothalamus was decreased as well. Moreover, astaxanthin could down-regulate the expression of IL-6, IL-1ß and COX-2 in the hippocampus. These findings suggest that the mechanism of astaxanthin in preventing depression in diabetic mice involves the inhibition of inflammation/inflammation inhibition, thereby protecting neurons in hippocampus, amygdala and hypothalamus against hyperglycemic damage.


Asunto(s)
Antiinflamatorios/farmacología , Depresión/prevención & control , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Inflamación/tratamiento farmacológico , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/inmunología , Amígdala del Cerebelo/patología , Animales , Antidepresivos/farmacología , Caspasa 3/metabolismo , Ciclooxigenasa 2/metabolismo , Depresión/inmunología , Depresión/patología , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/psicología , Evaluación Preclínica de Medicamentos , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/inmunología , Hipocampo/patología , Hipotálamo/efectos de los fármacos , Hipotálamo/inmunología , Hipotálamo/patología , Inflamación/metabolismo , Inflamación/patología , Inflamación/psicología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones Endogámicos ICR , Distribución Aleatoria , Xantófilas/farmacología
7.
Physiol Behav ; 151: 412-20, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26272354

RESUMEN

Neurons in the hippocampal and cortical functional regions are more susceptible to damage induced by hyperglycemia, which can result in severe spatial learning and memory impairment. Neuroprotection ameliorates cognitive impairment induced by hyperglycemia in diabetic encephalopathy (DE). Astaxanthin has been widely studied in diabetes mellitus and diabetic complications due to its hypoglycemic, antioxidant and anti-apoptotic effects. However, whether astaxanthin can alleviate cognition deficits induced by DE and its precise mechanisms remain undetermined. In this study, DE was induced by streptozotocin (STZ, 150 mg/kg) in ICR mice. We observed the effect of astaxanthin on cognition and investigated its potential mechanisms in DE mice. Results showed that astaxanthin treatment significantly decreased the latency and enhanced the distance and time spent in the target quadrant in the Morris water maze test. Furthermore, neuronal survival was significantly increased in the hippocampal CA3 region and the frontal cortex following treatment with astaxanthin. Meanwhile, immunoblotting was used to observe the nuclear translocation of nuclear factor-kappaB (NF-κB) p65 and the expression of tumor necrosis factor-α (TNF-α) in the hippocampus and frontal cortex. The results indicated that astaxanthin could inhibit NF-κB nuclear translocation and downregulate TNF-α expression in the hippocampus and frontal cortex. Overall, the present study implied that astaxanthin could improve cognition by protecting neurons against inflammation injury potentially through inhibiting the nuclear translocation of NF-κB and down-regulating TNF-α.


Asunto(s)
Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Diabetes Mellitus Experimental/complicaciones , Inflamación/tratamiento farmacológico , Inflamación/etiología , Análisis de Varianza , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/patología , Modelos Animales de Enfermedad , Lóbulo Frontal/patología , Hipocampo/patología , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , FN-kappa B/metabolismo , Tiempo de Reacción/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Xantófilas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA