Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Sci Health B ; 58(4): 316-326, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36942478

RESUMEN

The degradation of imidacloprid and acetamiprid in tea infusion by ultraviolet (UV) light irradiation was investigated in this study. Results showed that the influence of UV light irradiation on the quality of tea infusion was controllable and UV light irradiation was effective on the degradation of both pesticides. The maximum removal rates were 75.2% for imidacloprid and 17.6% for acetamiprid after irradiation (650 µW/cm,2 120 min). The degradation of both pesticides followed the first-order kinetics model. Three degradation products were identified for imidacloprid and one for acetamiprid based on liquid chromatography-tandem mass spectrometry analysis. The degradation pathway of imidacloprid involved in the cleavage of C-C bond with the loss of nitro group followed by the hydrogenation, oxidation and hydrolysis, while the degradation of acetamiprid involved in the oxidation at the chlorine atom with the bonding of C atoms at positions 1 and 4 on the pyridine ring. Simultaneously, the toxicity of both pesticides was mitigated by UV light irradiation according to LO2 cell toxicity evaluation. The study provided a low-cost and effective way to reduce imidacloprid and acetamiprid from tea infusion, and it has the potential to be applied to the ready-to drink tea beverage production in industrial scale.


Asunto(s)
Camellia sinensis , Residuos de Plaguicidas , Plaguicidas , Camellia sinensis/química , Rayos Ultravioleta , Té/química , Residuos de Plaguicidas/análisis , Neonicotinoides/análisis , Plaguicidas/análisis , Espectrometría de Masas en Tándem/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA