Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Physiol Biochem ; 201: 107875, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37451003

RESUMEN

Tea plants (Camellia sinensis) typically contain high-flavonoid phytochemicals like catechins. Recently, new tea cultivars with unique purple-colored leaves have gained attention. These purple tea cultivars are enriched with anthocyanin, which provides an interesting perspective for studying the metabolic flux of the flavonoid pathway. An increasing number of studies are focusing on the leaf color formation of purple tea and this review aims to summarize the latest progress made on the composition and accumulation of anthocyanins in tea plants. In addition, the regulation mechanism in its synthesis will be discussed and a hypothetical regulation model for leaf color transformation during growth will be proposed. Some novel insights are presented to facilitate future in-depth studies of purple tea to provide a theoretical basis for targeted breeding programs in leaf color.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Antocianinas/metabolismo , Proteínas de Plantas/genética , Fitomejoramiento , Flavonoides/metabolismo , Hojas de la Planta/metabolismo , , Regulación de la Expresión Génica de las Plantas , Transcriptoma
2.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37373460

RESUMEN

The light-sensitive albino tea plant can produce pale-yellow shoots with high levels of amino acids which are suitable to process high-quality tea. In order to understand the mechanism of the albino phenotype formation, the changes in the physio-chemical characteristics, chloroplast ultrastructure, chlorophyll-binding proteins, and the relevant gene expression were comprehensively investigated in the leaves of the light-sensitive albino cultivar 'Huangjinya' ('HJY') during short-term shading treatment. In the content of photosynthetic pigments, the ultrastructure of the chloroplast, and parameters of the photosynthesis in the leaves of 'HJY' could be gradually normalized along with the extension of the shading time, resulting in the leaf color transformed from pale yellow to green. BN-PAGE and SDS-PAGE revealed that function restoration of the photosynthetic apparatus was attributed to the proper formation of the pigment-protein complexes on the thylakoid membrane that benefited from the increased levels of the LHCII subunits in the shaded leaves of 'HJY', indicating the low level of LHCII subunits, especially the lack of the Lhcb1 might be responsible for the albino phenotype of the 'HJY' under natural light condition. The deficiency of the Lhcb1 was mainly subject to the strongly suppressed expression of the Lhcb1.x which might be modulated by the chloroplast retrograde signaling pathway GUN1 (GENOMES UNCOUPLED 1)-PTM (PHD type transcription factor with transmembrane domains)-ABI4 (ABSCISIC ACID INSENSITIVE 4).


Asunto(s)
Camellia sinensis , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Camellia sinensis/genética , Fotosíntesis , Tilacoides/metabolismo , Hojas de la Planta/metabolismo , Clorofila/metabolismo
3.
Molecules ; 27(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557927

RESUMEN

Sweet tea is a popular herbal drink in southwest China, and it is usually made from the shoots and tender leaves of Lithocarpus litseifolius. The sweet taste is mainly attributed to its high concentration of dihydrochalcones. The distribution and biosynthesis of dihydrochaldones in sweet tea, as well as neuroprotective effects in vitro and in vivo tests, are reviewed in this paper. Dihydrochalones are mainly composed of phloretin and its glycosides, namely, trilobatin and phloridzin, and enriched in tender leaves with significant geographical specificity. Biosynthesis of the dihydrochalones follows part of the phenylpropanoid and a branch of flavonoid metabolic pathways and is regulated by expression of the genes, including phenylalanine ammonia-lyase, 4-coumarate: coenzyme A ligase, trans-cinnamic acid-4-hydroxylase and hydroxycinnamoyl-CoA double bond reductase. The dihydrochalones have been proven to exert a significant neuroprotective effect through their regulation against Aß deposition, tau protein hyperphosphorylation, oxidative stress, inflammation and apoptosis.


Asunto(s)
Chalconas , Gusto , Neuroprotección , Chalconas/farmacología , Té/genética
4.
Int J Mol Sci ; 23(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35955658

RESUMEN

The light-sensitive (LS) albino tea plant grows albinic shoots lacking chlorophylls (Chls) under high-light (HL) conditions, and the albinic shoots re-green under low light (LL) conditions. The albinic shoots contain a high level of amino acids and are preferential materials for processing quality green tea. The young plants of the albino tea cultivars are difficult to be cultivated owing to lacking Chls. The mechanisms of the tea leaf bleaching and re-greening are unknown. We detected the activity and composition of photosystem II (PSII) subunits in LS albino tea cultivar "Huangjinya" (HJY), with a normal green-leaf cultivar "Jinxuan" (JX) as control so as to find the relationship of PSII impairment to the albino phenotype in tea. The PSII of HJY is more vulnerable to HL-stress than JX. HL-induced degradation of PSII subunits CP43, CP47, PsbP, PsbR. and light-harvest chlorophyll-protein complexes led to the exposure and degradation of D1 and D2, in which partial fragments of the degraded subunits were crosslinked to form larger aggregates. Two copies of subunits PsbO, psbN, and Lhcb1 were expressed in response to HL stress. The cDNA sequencing of CP43 shows that there is no difference in sequences of PsbC cDNA and putative amino acids of CP43 between HJY and JX. The de novo synthesis and/or repair of PSII subunits is considered to be involved in the impairment of PSII complexes, and the latter played a predominant role in the albino phenotype in the LS albino tea plant.


Asunto(s)
Camellia sinensis , Complejo de Proteína del Fotosistema II , Aminoácidos/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Clorofila/metabolismo , ADN Complementario/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
5.
Molecules ; 27(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35566160

RESUMEN

Chemicals underlying the floral aroma of dry teas needs multi-dimensional investigations. Green, black, and freeze-dried tea samples were produced from five tea cultivars, and only 'Chunyu2' and 'Jinguanyin' dry teas had floral scents. 'Chunyu2' green tea contained the highest content of total volatiles (134.75 µg/g) among green tea samples, while 'Jinguanyin' black tea contained the highest content of total volatiles (1908.05 µg/g) among black tea samples. The principal component analysis study showed that 'Chunyu2' and 'Jinguanyin' green teas and 'Chunyu2' black tea were characterized by the abundant presence of certain alcohols with floral aroma, while 'Jinguanyin' black tea was discriminated due to the high levels of certain alcohols, esters, and aldehydes. A total of 27 shared volatiles were present in different tea samples, and the contents of 7 floral odorants in dry teas had correlations with those in fresh tea leaves (p < 0.05). Thus, the tea cultivar is crucial to the floral scent of dry tea, and these seven volatiles could be promising breeding indices.


Asunto(s)
Camellia sinensis , Compuestos Orgánicos Volátiles , Alcoholes/análisis , Camellia sinensis/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Fitomejoramiento , Té/química , Compuestos Orgánicos Volátiles/análisis
6.
Physiol Plant ; 174(1): e13646, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35129836

RESUMEN

As a preferred nitrogen form, ammonium (NH4 + ) transport via specific transporters is particularly important for the growth and development of tea plants (Camellia sinensis L.). However, our understanding of the functions of the AMT family in tea plants is limited. We identified and named 16 putative AMT genes according to phylogenetic analysis. All CsAMT genes were divided into three groups, distributed on 12 chromosomes with only one segmental duplication repetition. The CsAMT genes showed different expression levels in different organs, and most of them were expressed mainly in the apical buds and roots. Complementation analysis of yeast mutants showed that CsAMTs restored the uptake of NH4 + . This study provides insights into the genome-wide distribution and spatial expression of AMT genes in tea plants.


Asunto(s)
Compuestos de Amonio , Camellia sinensis , Compuestos de Amonio/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Té/metabolismo
7.
Plant Physiol Biochem ; 167: 561-566, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34454315

RESUMEN

Nitrogen plays an important role in plant growth and development, with different nitrogen forms also having an impact on carbon/nitrogen metabolism. Unlike most plants, tea plants prefer ammonium over nitrate. In this paper, we focused on how different nitrogen sources regulate the carbon/nitrogen metabolism in tea plants. Tea seedlings of 'Longjing 43' were cultivated hydroponically in four different solutions (zero-nitrogen, only NH4+, only NO3- and mixed nitrogen (NH4+: NO3- = 1:1). We analyzed characteristic components of tea plants and related genes in carbon and nitrogen metabolism. Tea polyphenols and catechins representing carbon pool, increased when NO3- was supplied as the nitrogen source, and similar findings were recorded in the zero-nitrogen treatment. The expression of most catechins biosynthesis-related genes was up regulated under NO3- and zero-N treatment, that was associated with tea polyphenols and catechins changes. Compared with NO3- as the nitrogen source, NH4+ and mixed nitrogen treatments had a positive effect on the accumulation of amino acids, especially theanine, glutamate and arginine, and these components contribute to the freshness flavor of tea. The expression of ammonium-assimilation genes was also up-regulated with NH4+ supply. Under mixed nitrogen treatment, the ratio of total polyphenols to free amino acids (PP/AA) was between sole NH4+ and NO3- supply. Therefore, compared with single nitrogen source, carbon and nitrogen metabolism of tea plant was more balanced under mixed nitrogen treatment. The results suggested that NO3- as the nitrogen source promoted the biosynthesis of catechins enriching the carbon pool, whereas NH4+ supply was more conducive to nitrogen metabolism, indicating that different nitrogen sources could affect the carbon and nitrogen balance.


Asunto(s)
Camellia sinensis , Camellia sinensis/genética , Carbono , Expresión Génica , Nitratos , Nitrógeno ,
8.
Molecules ; 26(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209485

RESUMEN

(-)-Epigallocatechin-3-O-gallate (EGCG), the most abundant component of catechins in tea (Camellia sinensis (L.) O. Kuntze), plays a role against viruses through inhibiting virus invasiveness, restraining gene expression and replication. In this paper, the antiviral effects of EGCG on various viruses, including DNA virus, RNA virus, coronavirus, enterovirus and arbovirus, were reviewed. Meanwhile, the antiviral effects of the EGCG epi-isomer counterpart (+)-gallocatechin-3-O-gallate (GCG) were also discussed.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Catequina/análogos & derivados , Té/química , Animales , Antivirales/uso terapéutico , Catequina/farmacología , Catequina/uso terapéutico , Humanos , Internalización del Virus/efectos de los fármacos , Virus/efectos de los fármacos
9.
Food Chem ; 353: 129428, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33714119

RESUMEN

Roasting process impacts the chemical profile and aroma of roasted tea. To compare the impacts of far-infrared irradiation and drum roasting treatments (light, medium and heavy degrees), the corresponding roasted teas were prepared from steamed green tea for chemical analyses and quantitative descriptive analysis on aroma, and correlations between volatiles and aroma attributes were studied. There were 8 catechins, 13 flavonol glycosides and 105 volatiles quantified. Under heavy roasting treatments, most catechins and flavonol glycosides decreased, and aldehydes, ketones, furans, pyrroles/pyrazines, and miscellaneous greatly increased, while far-infrared irradiated teas had distinct nutty aroma compared with the roasty and burnt odor of drum roasted teas. The weighted correlation network analysis result showed that 56 volatiles were closely correlated with the aroma attributes of roasted teas. This study reveals the differential chemical and sensory changes of roasted teas caused by different roasting processes, and provides a novel way for flavor chemistry study.


Asunto(s)
Té/química , Compuestos Orgánicos Volátiles/análisis , Catequina/análisis , Análisis por Conglomerados , Culinaria/métodos , Flavonoides/análisis , Cromatografía de Gases y Espectrometría de Masas , Humanos , Rayos Infrarrojos , Odorantes/análisis , Análisis de Componente Principal , Té/metabolismo
10.
Food Chem ; 339: 128088, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32979714

RESUMEN

Flavonol glycosides are associated with astringency and bitterness of teas. To clarify the dominant enzymatic reaction of flavonol glycosides in tea leaves, the catalytic effects of polyphenol oxidase (PPO), peroxidase (POD) and ß-glucosidase were studied, with the maintaining rates of total flavonol glycosides (TFG) being 73.0%, 99.8% and 94.3%. PPO was selected for further investigations, including the effects of pH value (3.5 ~ 6.5), temperature (25 °C ~ 55 °C) and dosage (39 ~ 72 U/mL PPO and 36 U/mL PPO, 3 ~ 36 U/mL POD). The oxidation of flavonol glycosides were intensified at pH 6.5, with 51.8% and 15.4% of TFG maintained after PPO and PPO + POD treatments, suggesting an enhancement from POD. The sensitivity ranking to PPO was: myricetin glycosides > quercetin glycosides > kaempferol glycosides. The inhibitor treatment testified the leading role of PPO in catalyzing flavonol glycosides in tea leaves. Sugar moiety enhanced the docking affinity of flavonol glycosides for PPO. PPO shows the potential of modifying flavonol glycoside composition.


Asunto(s)
Camellia sinensis/metabolismo , Catecol Oxidasa/metabolismo , Flavonoles/metabolismo , Hojas de la Planta/metabolismo , Camellia sinensis/química , Catecol Oxidasa/química , Flavonoides/química , Flavonoides/metabolismo , Flavonoles/química , Glicósidos/química , Concentración de Iones de Hidrógeno , Quempferoles/química , Quempferoles/metabolismo , Oxidación-Reducción , Peroxidasa/química , Peroxidasa/metabolismo , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Té/química , Temperatura , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo
11.
J Agric Food Chem ; 68(47): 14071-14080, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33196171

RESUMEN

Amino acids are very important for oolong tea brisk-smooth mouthfeel which is mainly associated with bruising and withering treatment (BWT). In this study, metabolome and transcriptome analyses were performed to comprehensively investigate the changes in abundance of amino acids and the expression pattern of relevant genes during BWT of oolong tea manufacturing. Levels of most amino acids increased during BWT in the leaves harvested from 4 cultivars, while expression of the relevant function genes responsible for synthesis and transformation of amino acids up-regulated accordingly. Upstream hub genes including receptor-like protein kinase IKU2, serine/threonine-protein kinase PBL11, MYB transcription factor MYB2, ethylene-responsive transcription factor ERF114, WRKY transcription factor WRKY71, aspartate aminotransferase AATC, UDP-glycosyltransferase U91D1, and 4-hydroxy-4-methyl-2-oxoglutarate aldolase 2 RRAA2, were predicted to be involved in regulation of the function genes expression and the amino acids metabolism through weighted gene coexpression network analysis. A modulation mechanism for accumulation of amino acids during BWT was also proposed. These findings give a deep insight into the metabolic reprogramming mechanism of amino acids during BWT of oolong tea.


Asunto(s)
Camellia sinensis , Aminoácidos , Metaboloma , Hojas de la Planta ,
12.
Sci Rep ; 9(1): 20239, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882926

RESUMEN

Elucidation of the molecular mechanism related to the dedifferentiation and redifferentiation during tissue culture will be useful for optimizing regeneration system of tea plant. In this study, an integrated sRNAome and transcriptome analyses were carried out during phase changes of the stem explant culture. Among 198 miRNAs and 8001 predicted target genes, 178 differentially expressed miRNAs and 4264 potential targets were screened out from explants, primary calli, as well as regenerated roots and shoots. According to KEGG analysis of the potential targets, pathway of "aminoacyl-tRNA biosynthesis", "proteasome" and "glutathione metabolism" was of great significance during the dedifferentiation, and pathway of "porphyrin and chlorophyll metabolism", "mRNA surveillance pathway", "nucleotide excision repair" was indispensable for redifferentiation of the calli. Expression pattern of 12 miRNAs, including csn-micR390e, csn-miR156b-5p, csn-miR157d-5p, csn-miR156, csn-miR166a-3p, csn-miR166e, csn-miR167d, csn-miR393c-3p, csn-miR394, csn-miR396a-3p, csn-miR396 and csn-miR396e-3p, was validated by qRT-PCR among 57 differentially expressed phase-specific miRNAs. Validation also confirmed that regulatory module of csn-miR167d/ERF3, csn-miR156/SPB1, csn-miR166a-3p/ATHB15, csn-miR396/AIP15A, csn-miR157d-5p/GST and csn-miR393c-3p/ATG18b might play important roles in regulating the phase changes during tissue culture of stem explants.


Asunto(s)
Camellia sinensis/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , ARN de Planta/genética , , Desdiferenciación Celular/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Técnicas de Cultivo de Tejidos/métodos
13.
Int J Mol Sci ; 20(10)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108845

RESUMEN

Anthracnose is a major leaf disease in tea plant induced by Colletotrichum, which has led to substantial losses in yield and quality of tea. The molecular mechanism with regards to responses or resistance to anthracnose in tea remains unclear. A de novo transcriptome assembly dataset was generated from healthy and anthracnose-infected leaves on tea cultivars "Longjing-43" (LJ43) and "Zhenong-139" (ZN139), with 381.52 million pair-end reads, encompassing 47.78 billion bases. The unigenes were annotated versus Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), National Center for Biotechnology Information (NCBI) non-redundant protein sequences (Nr), evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) and Swiss-prot. The number of differential expression genes (DEGs) detected between healthy and infected leaves was 1621 in LJ43 and 3089 in ZN139. The GO and KEGG enrichment analysis revealed that the DEGs were highly enriched in catalytic activity, oxidation-reduction, cell-wall reinforcement, plant hormone signal transduction and plant-pathogen interaction. Further studies by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and high-performance liquid chromatography (HPLC) showed that expression of genes involved in endogenous salicylic acid biosynthesis and also accumulation of foliar salicylic acid are involved in the response of tea plant to anthracnose infection. This study firstly provided novel insight in salicylic acid acting as a key compound in the responses of tea plant to anthracnose disease. The transcriptome dataset in this study will facilitate to profile gene expression and metabolic networks associated with tea plant immunity against anthracnose.


Asunto(s)
Camellia sinensis/genética , Colletotrichum/patogenicidad , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Camellia sinensis/metabolismo , Camellia sinensis/microbiología , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo
14.
Sci Rep ; 9(1): 2935, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814540

RESUMEN

Tissue culture is very important for identifying the gene function of Camellia sinensis (L.) and exploiting novel germplasm through transgenic technology. Regeneration system of tea plant has been explored but not been well established since the molecular mechanism of tea plant regeneration is not clear yet. In this study, transcriptomic analysis was performed in the initial explants of tea plant and their dedifferentiated and redifferentiated tissues. A total of 93,607 unigenes were obtained through de novo assembly, and 7,193 differentially expressed genes (DEGs) were screened out from the 42,417 annotated unigenes. Much more DEGs were observed during phase transition rather than at growth stages of callus. Our KOG and KEGG analysis, and qPCR results confirmed that phase transition of tea plant was closely related to the mechanism that regulate expression of genes encoding the auxin- and cytokinin-responsive proteins, transcription factor MYB15 and ethylene-responsive transcription factor ERF RAP2-12. These findings provide a reliable foundation for elucidating the mechanism of the phase transition and may help to optimize the regeneration system by regulating the gene expression pattern.


Asunto(s)
Camellia sinensis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Regeneración/genética , Factores de Transcripción/genética , Camellia sinensis/citología , Camellia sinensis/genética , Citocininas/metabolismo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
15.
Molecules ; 24(5)2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857144

RESUMEN

There is epidemiological evidence showing that drinking green tea can lower the risk of esophageal cancer (EC). The effect is mainly attributed to tea polyphenols and their most abundant component, (-)-epigallocatechin-3-gallate (EGCG). The possible mechanisms of tumorigenesis inhibition of EGCG include its suppressive effects on cancer cell proliferation, angiogenesis, DNA methylation, metastasis and oxidant stress. EGCG modulates multiple signal transduction and metabolic signaling pathways involving in EC. A synergistic effect was also observed when EGCG was used in combination with other treatment methods.


Asunto(s)
Catequina/análogos & derivados , Neoplasias Esofágicas/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Catequina/química , Catequina/farmacología , Proliferación Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Humanos , Polifenoles/química , Transducción de Señal/efectos de los fármacos ,
16.
Molecules ; 23(9)2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30217074

RESUMEN

Many in vitro studies have shown that tea catechins had vevarious health beneficial effects. However, inconsistent results between in vitro and in vivo studies or between laboratory tests and epidemical studies are observed. Low bioavailability of tea catechins was an important factor leading to these inconsistencies. Research advances in bioavailability studies involving absorption and metabolic biotransformation of tea catechins were reviewed in the present paper. Related techniques for improving their bioavailability such as nanostructure-based drug delivery system, molecular modification, and co-administration of catechins with other bioactives were also discussed.


Asunto(s)
Camellia sinensis/química , Catequina/farmacocinética , Animales , Disponibilidad Biológica , Catequina/química , Sistemas de Liberación de Medicamentos , Humanos , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Extractos Vegetales/química , Extractos Vegetales/farmacocinética
17.
Sci Data ; 5: 180194, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30251991

RESUMEN

Tea plant (Camellia sinensis) is a typical fluoride (F) hyperaccumulator enriching most F in old leaves. There is association between the risk of fluorosis and excessive consumption of teas prepared using the old leaves. It is meaningful to develop methods for controlling F levels in tea leaves. We generated a comprehensive RNA-seq dataset from tea plants grown at various F levels for different durations by hydroponics, aiming at providing information on mechanism of F metabolism in tea plant. Besides raw reads of the RNA-seq dataset, we present assembled unigenes and aligned unigenes with annotations versus the Gene Ontology (GO) databases, Kyoto Encyclopaedia of Genes and Genomes (KEGG) databases, and Nonredundant (Nr) protein databases with low e-values. 69,488 unigenes were obtained in total, in which 40,894 were given Nr annotations.


Asunto(s)
Camellia sinensis/genética , ARN de Planta , Análisis de Secuencia de ARN , Transcriptoma , Camellia sinensis/química , Fluoruros , Flúor/química
18.
Food Chem ; 269: 202-211, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30100425

RESUMEN

To elucidate formation mechanism of oolong tea aroma, the released and remaining volatiles during bruising and withering treatment were analyzed using head space solid-phase microextraction/gas chromatography-mass spectrometry. An increase in proportion of the released terpenoid volatiles (TVs) along with a decrease in proportion of the released C6 green leaf volatiles (GLVs) was observed in both cultivars 'Zhejiang139' and 'Foshou'. Proportion of remaining TVs also fluctuated reversely with GLVs although the level of these volatiles increased remarkably. High ratio of TVs to GLVs was the key chemical foundation of oolong tea characteristic aroma and could be regarded as a good indicator in screening cultivar for suitably producing high quality oolong tea. Combining with transcriptome analysis, increased TVs and GLVs during the treatment might be largely generated through de novo synthesis and modulated at transcript level through up-regulation of genes involved in terpenoids metabolism and enzymatic cleavage of long-chain fatty acids.


Asunto(s)
Camellia sinensis/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , , Compuestos Orgánicos Volátiles/análisis , Odorantes/análisis
19.
J Microbiol Biotechnol ; 28(7): 1147-1155, 2018 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-29926702

RESUMEN

The degradation efficiency and catabolism pathways of the different methylxanthines (MXs) in isolated caffeine-tolerant strain Pseudomonas putida CT25 were comprehensively studied. The results showed that the degradation efficiency of various MXs varied with the number and position of the methyl groups on the molecule (i.e., xanthine > 7-methylxanthine ≈ theobromine > caffeine > theophylline > 1-methylxanthine). Multiple MX catabolism pathways coexisted in strain CT25, and a different pathway would be triggered by various MXs. Demethylation dominated in the degradation of N-7-methylated MXs (such as 7-methylxanthine, theobromine, and caffeine), where C-8 oxidation was the major pathway in the catabolism of 1-methylxanthine, whereas demethylation and C-8 oxidation are likely both involved in the degradation of theophylline. Enzymes responsible for MX degradation were located inside the cell. Both cell culture and cell-free enzyme assays revealed that N-1 demethylation might be a rate-limiting step for the catabolism of the MXs. Surprisingly, accumulation of uric acid was observed in a cell-free reaction system, which might be attributed to the lack of activity of uricase, a cytochrome c-coupled membrane integral enzyme.


Asunto(s)
Cafeína/metabolismo , Redes y Vías Metabólicas , Pseudomonas putida/aislamiento & purificación , Pseudomonas putida/metabolismo , Microbiología del Suelo , Xantinas/metabolismo , Biodegradación Ambiental , Cafeína/química , Tolerancia a Medicamentos , Jardines , Pseudomonas putida/enzimología , Pseudomonas putida/crecimiento & desarrollo , Suelo , Especificidad por Sustrato , Té/microbiología , Teobromina/química , Teobromina/metabolismo , Teofilina/química , Teofilina/metabolismo , Ácido Úrico/metabolismo , Xantina/química , Xantina/metabolismo , Xantinas/química
20.
Nutrients ; 10(5)2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789466

RESUMEN

Neurodegenerative disease Alzheimer's disease (AD) is attracting growing concern because of an increasing patient population among the elderly. Tea consumption is considered a natural complementary therapy for neurodegenerative diseases. In this paper, epidemiological studies on the association between tea consumption and the reduced risk of AD are reviewed and the anti-amyloid effects of related bioactivities in tea are summarized. Future challenges regarding the role of tea in preventing AD are also discussed.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/antagonistas & inhibidores , Encéfalo/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/uso terapéutico , , Factores de Edad , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Camellia sinensis/química , Cognición/efectos de los fármacos , Humanos , Memoria/efectos de los fármacos , Persona de Mediana Edad , Degeneración Nerviosa , Fármacos Neuroprotectores/aislamiento & purificación , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/aislamiento & purificación , Pronóstico , Factores Protectores , Ingesta Diaria Recomendada , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA