Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Phytother Res ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697721

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD) is the main cause of chronic liver disease. Baicalin (Bai), a bioactive molecule found in Scutellaria baicalensis Georgi, possesses antioxidant and antiinflammatory properties. These activities suggest Bai could be a promising therapeutic agent against NAFLD; however, its specific effects and underlying mechanism are still not clear. This study aims to explore the effect of Bai to attenuate MAFLD and associated molecular mechanisms. Bai (50, 100 or 200 mg/kg) was orally administered to db/db mice with MAFLD for 4 weeks or db/m mice as the normal control. Bai markedly attenuated lipid accumulation, cirrhosis and hepatocytes apoptosis in the liver tissues of MAFLD mice, suggesting strong ability to attenuate MAFLD. Bai significantly reduced proinflammatory biomarkers and enhanced antioxidant enzymes, which appeared to be modulated by the upregulated p62-Keap1-Nrf2 signalling cascade; furthermore, cotreatment of Bai and all-trans-retinoic acid (Nrf2 inhibitor) demonstrated markedly weakened liver protective effects by Bai and its induced antioxidant and antiinflammatory responses. The present study supported the use of Bai in attenuating MAFLD as a promising therapeutic agent, and its strong mechanism of action in association with the upregulating the p62-keap1-Nrf2 pathway.

2.
Molecules ; 28(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615213

RESUMEN

Huangqin is the dried root of Scutellaria baicalensis Georgi, which has been widely utilized for heat-clearing (Qingre) and dewetting (Zaoshi), heat-killed (Xiehuo) and detoxifying (Jiedu) in the concept of Traditional Chinese Medicine and is used for treating inflammation and cancer in clinical formulas. Neobaicalein (NEO) is of flavonoid isolated from Huangqin and has been reported to possess prominent anti-inflammatory effects in published work. Th17/Treg balance shift to Th17 cells is an essential reason for autoimmune inflammatory diseases. However, the role NEO plays in Th17 and Treg and the underlying mechanism has not been elucidated yet. Network pharmacology-based study revealed that NEO predominantly regulated IL-17 signaling pathway. Moreover, our result shown that NEO (3-30 µmol/L) down-regulated Th17 differentiation and cellular supernatant and intracellular IL-17A level and tumor necrosis factor α production in a concentration-dependent manner. The further mechanism research revealed that NEO also specifically inhibited phosphorylation of STAT3(Tyr725) and STAT4 (Y693) without influence on activation of STAT5 and STAT6 in splenocytes. Immunofluorescence results illuminated that NEO effectively blocked STAT3 translocated into nucleus. Interestingly, NEO at appreciated dose could only inhibit Th17 cell differentiation and have no effect on Treg differentiation. The present study revealed that NEO effectively inhibited Th17 cell differentiation through specifically blocking the activation of STAT3 signaling without inactivation of STAT5 and STAT6. Additional inhibitory effect on activation of STAT4 by NEO also suggested the potential for antagonism against Th1 differentiation. All work suggested that NEO may be a potential candidate for immunoregulation and treating autoimmune inflammatory diseases through inhibiting immune cell viability and T cell differentiation.


Asunto(s)
Enfermedades Autoinmunes , Células Th17 , Humanos , Factor de Transcripción STAT5/metabolismo , Linfocitos T Reguladores , Diferenciación Celular , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Enfermedades Autoinmunes/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-34518768

RESUMEN

Curcumin (C) and resveratrol (R) are two well-known nutraceuticals with strong antioxidant activity that can protect cells from oxidative stress. This study aims to investigate the synergy of CR combinations in protecting human endothelial EAhy926 cells against H2O2-induced oxidative stress and its related mechanisms. C and R as individual compounds as well as CR combinations at different ratios were screened for their protective effects against H2O2 (2.5 mM) induced cell death assessed by cell viability assays. The synergistic interaction was analysed using the combination index model. The effects of optimal CR combinations on caspase-3 activity, ROS level, SOD activity, NAD cellular production, expression of Nrf2 and HO-1, and Nrf2 translocation were determined. CR combinations produced a synergistic protection against that of H2O2-induced changes in cell viability, caspase-3 activity, and ROS production. The strongest effect was observed for CR with the ratio of 8 : 2. Further experiments showed that CR 8 : 2 exhibited significantly greater effects in increasing Nrf2 translocation and expressions of Nrf2 and HO-1 proteins, as well as SOD activity and total cellular NAD production, than that of C or R alone. The findings demonstrate that combination of C and R produced a strong synergy in activity against H2O2-induced oxidative stress in EAhy926 cells. The mechanism of this synergy involves the activation of Nrf2-HO-1 signaling pathway and promotion of antioxidant enzymes. Further studies on CR synergy may help develop a new combination therapy for endothelial dysfunction and other conditions related to oxidative stress.

4.
Mol Med Rep ; 24(2)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34165163

RESUMEN

Dendrobium mixture (DMix) is a Traditional Chinese Medicine widely used for preventing and treating diabetic nephropathy (DN). Autophagy contributes to DN development and progression. The present study aimed to investigate the mechanism underlying the protective effects of DMix on the kidneys of rats with DN and to determine whether this involves autophagy. Herein, a high­sugar and high­fat diet, combined with the intra­abdominal injection of low­dose streptozocin, was used to induce DN in 40 Sprague­Dawley male rats. In total, 10 additional rats were used as controls. The rats with DN were then randomly divided into three groups and treated with DMix, gliquidone or saline via gastric administration for 8 weeks. Body weight, kidney weight, kidney index, fasting blood glucose (FBG), blood lipid, hemoglobin A1c (HbA1c), insulin, blood urea nitrogen and serum creatinine levels, as well as the 24­h urinary albumin excretion rate (UAER) were measured. H&E, Periodic Acid­Schiff and Masson staining were used to examine the renal pathology. The mRNA and protein expression levels of LC3 and Beclin­1 in renal tissues were measured using reverse transcription­quantitative PCR and immunohistochemistry, respectively. Western blotting was conducted to measure the protein expression levels of PI3K, phosphorylated (p)­PI3K, Akt, p­Akt, mTOR, p­mTOR, LC3 and Beclin­1 in renal tissues. It was found that DMix significantly reduced the FBG, blood lipids, HbA1c and insulin levels, kidney weight, kidney index and UAER in rats with DN, as well as improved renal function. Rats with DN showed notable glomerular hypertrophy, an increase in mesangial matrix content and renal interstitial fibrosis. Moreover, DMix notably reduced kidney damage. The results demonstrated that DMix inhibited the phosphorylation of PI3K, Akt and mTOR in the kidney tissues of rats with DN, and increased the protein and mRNA expression levels of LC3 and Beclin­1. Therefore, it was suggested that DMix has protective effects on the kidney of rats with DN, which may be associated with the inhibition of the PI3K/Akt/mTOR signaling pathway and activation of renal autophagy by this traditional medicine.


Asunto(s)
Dendrobium/metabolismo , Nefropatías Diabéticas/metabolismo , Riñón/metabolismo , Riñón/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Autofagia , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Diabetes Mellitus Experimental/patología , Medicamentos Herbarios Chinos/farmacología , Fibrosis , Masculino , Fosforilación , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Estreptozocina/farmacología
5.
Phytomedicine ; 80: 153339, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33038868

RESUMEN

BACKGROUND: As dysregulation of immunometabolism plays a key role in the immunological diseases, dyslipidemia frequently observed in rheumatoid arthritis (RA) patients (60%) is associated with the disease activity and has been considered as the potential target of anti-inflammatory strategy. However, targeting of metabolic events to develop novel anti-inflammatory therapeutics are far from clear as well as the mechanism of dyslipidemia in RA. PURPOSE: To explore the therapeutic potential and mechanisms of silybin again RA through the regulation of lipid metabolism. METHODS: Adjuvant-induced arthritis (AIA) rat model was used to examine the effects of silybin on modulating dysregulated lipid metabolism and arthritis. Metabolomics, docking technology, and biochemical methods such as western blots, qRT-PCR, immunofluorescence staining were performed to understanding the underlying mechanisms. Moreover, knock-down of LXRα and LXRα agonist were used on LO2 cell lines to understand the action of silybin. RESULTS: We are the first to demonstrate that silybin can ameliorate dyslipidemia and arthritis in AIA rats. Overexpression of LXRα and several key lipogenic enzymes regulated by LXRα, including lipoprotein lipase (LPL), cholesterol 7α and 27α hydroxylase (CYP7A, CYP27A), adipocyte fatty acid-binding protein (aP2/FABP4) and fatty acid translocase (CD36/FAT), were observed in AIA rats, which mostly accounted for dyslipidemia during arthritis development. Metabolomics, docking technology, and biochemical results indicated that anti-arthritis effects of silybin related to suppressing the up-regulated LXRα and abnormal lipid metabolism. Notably, activation of LXRα could potentiate cell inflammatory process induced by LPS through the regulation of NF-κB pathway, however, suppression of LXRα agonism by siRNA or silybin reduced the nuclear translocation of NF-κB as well as the induction of downstream cytokines, indicating LXRα agonism is the important factor for the arthritis development and could be a potential target. CONCLUSION: The up-regulation of LXRα can activate lipogenesis enzymes to worsen the inflammatory process in AIA rats as well as the development of dyslipidemia, therefore, rectifying lipid disorder via suppression of LXRα agonism pertains the capacity of drug target, which enables to discover and develop new drugs to treat rheumatoid arthritis with dyslipidaemia.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Receptores X del Hígado/metabolismo , Silibina/farmacología , Animales , Artritis Experimental/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Línea Celular , Citocinas/metabolismo , Dislipidemias/tratamiento farmacológico , Enzimas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Lipogénesis/efectos de los fármacos , Lipogénesis/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Receptores X del Hígado/antagonistas & inhibidores , Receptores X del Hígado/genética , Masculino , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Regulación hacia Arriba/efectos de los fármacos
6.
Antioxid Redox Signal ; 28(5): 339-357, 2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28665143

RESUMEN

AIMS: Systemic diseases often have common characteristics. The aim of this study was to investigate the feasibility of targeting common pathological metabolism to inhibit the progression of malignant and proliferative diseases. RESULTS: Gefitinib-resistant (G-R) nonsmall-cell lung cancer (NSCLC) and rheumatoid arthritis (RA) were studied as conditions representative of malignant and proliferative diseases, respectively. Strong lipogenic activity and high expression of sterol regulatory element-binding protein 1 (SREBP1) were found in both G-R NSCLC cells and synovial fibroblasts from RA patients (RASFs). Berberine (BBR), an effective suppressor of SREBP1 and lipogenesis regulated through reactive oxygen species (ROS)/AMPK pathway, selectively inhibited the growth of G-R NSCLC cells and RASFs but not that of normal cells. It effectively caused mitochondrial dysfunction, activated ROS/AMPK pathway, and finally suppressed cellular lipogenesis and cell proliferation. Addition of ROS blocker, AMPK inhibitor, and palmitic acid significantly reduced the effect of BBR. In an in vivo study, treatment of BBR led to significant inhibition of mouse tumor xenograft growth and remarkably slowed down the development of adjuvant-induced arthritis in rats. Innovation and Conclusion: Targeting ROS/AMPK/lipogenesis signaling pathway selectively inhibited the growth of G-R NSCLC cells and the progress of RASFs in vitro and in vivo, which provides a new avenue for treating malignancies and proliferative diseases. Antioxid. Redox Signal. 28, 339-357.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Artritis Reumatoide/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Lipogénesis/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Berberina/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Gefitinib , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Oxidación-Reducción , Quinazolinas/administración & dosificación , Quinazolinas/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Líquido Sinovial/efectos de los fármacos , Líquido Sinovial/metabolismo
7.
Sci Rep ; 5: 18080, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26657159

RESUMEN

Kouyanqing Granule (KYQG) is a traditional Chinese herbal formula composed of Flos lonicerae (FL), Radix scrophulariae (RS), Radix ophiopogonis (RO), Radix asparagi (RA), and Radix et rhizoma glycyrrhizae (RG). In contrast with the typical method of separating and then biologicalily testing the components individually, this study was designed to establish an approach in order to define the core bioactive ingredients of the anti-inflammatory effects of KYQG based on the relevance analysis between chemical characters and biological effects. Eleven KYQG samples with different ingredients were prepared by changing the ratios of the 5 herbs. Thirty-eight ingredients in KYQG were identified using Ultra-fast liquid chromatography-Diode array detector-Quadrupole-Time-of-flight-Tandem mass spectrometry (UFLC-DAD-Q-TOF-MS/MS) technology. Human oral keratinocytes (HOK) were cultured for 24 hours with 5% of Cigarette smoke extract (CSE) to induce inflammation stress. Interleukin-1ß (IL-1ß), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumour necrosis factor-α (TNF-α) were evaluated after treatment with the eleven KYQG samples. Grey relational analysis(GRA), Pearson's correlations (PCC), and partial least-squares (PLS) were utilized to evaluate the contribution of each ingredient. The results indicated that KYQG significantly reduced interleukin-1ß, interleukin-6, interleukin-8, and tumour necrosis factor-α levels, in which lysine, γ-aminobutyric acid, chelidonic acid, tyrosine, harpagide, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, isoquercitrin, luteolin-7-o-glucoside, 3,4-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, angoroside C, harpagoside, cinnamic acid, and ruscogenin play a vital role.


Asunto(s)
Antiinflamatorios/farmacología , Descubrimiento de Drogas/métodos , Medicamentos Herbarios Chinos/química , Queratinocitos/efectos de los fármacos , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Células Cultivadas , Ácido Clorogénico/análogos & derivados , Ácido Clorogénico/química , Ácido Clorogénico/aislamiento & purificación , Ácido Clorogénico/farmacología , Cromatografía Liquida/métodos , Cinamatos/química , Cinamatos/aislamiento & purificación , Cinamatos/farmacología , Flavonas/química , Flavonas/aislamiento & purificación , Flavonas/farmacología , Glucósidos/química , Glucósidos/aislamiento & purificación , Glucósidos/farmacología , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Estructura Molecular , Humo , Espirostanos/química , Espirostanos/aislamiento & purificación , Espirostanos/farmacología , Espectrometría de Masas en Tándem/métodos , Productos de Tabaco , Factor de Necrosis Tumoral alfa/metabolismo
8.
Fitoterapia ; 96: 25-32, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24727085

RESUMEN

Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a stimulant laxative and used to treat constipation. Aquaporin 3 (AQP3) plays an important role in regulating water transfer in the colon. In the study, we investigated whether the laxative effect of emodin is associated with the regulation of AQP3 in the colon. Our results showed that treatment with emodin increased the fecal water content in the colon of mice and evaluation index of defecation in a dose-dependent manner. More interestingly, emodin significantly increased the AQP3 protein and mRNA expression both in the colon of mice and in human intestinal epithelial cells (HT-29). Mechanistically, emodin obviously up-regulated the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A catalytic subunits α (PKA C-α) and phosphorylated cAMP response element-binding protein (p-CREB Ser133) expression in HT-29 cells. These results suggest that the laxative effect of emodin is associated with the increased expression of AQP3 by up-regulating PKA/p-CREB signal pathway.


Asunto(s)
Acuaporina 3/metabolismo , Emodina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Laxativos/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Acuaporina 3/genética , Supervivencia Celular/efectos de los fármacos , Colon/efectos de los fármacos , Diarrea/inducido químicamente , Relación Dosis-Respuesta a Droga , Emodina/química , Emodina/aislamiento & purificación , Células Epiteliales/efectos de los fármacos , Heces/química , Células HT29 , Humanos , Laxativos/química , Laxativos/aislamiento & purificación , Masculino , Ratones , Ratones Endogámicos ICR , Estructura Molecular , Regulación hacia Arriba/efectos de los fármacos , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA