Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36573588

RESUMEN

In vitro-cultured oocytes are separated from the follicular micro-environment in vivo and are more vulnerable than in vivo oocytes to changes in the external environment. This vulnerability disrupts the homeostasis of the intracellular environment, affecting oocyte meiotic completion, and subsequent embryonic developmental competence in vitro. Glycine, one of the main components of glutathione (GSH), plays an important role in the protection of porcine oocytes in vitro. However, the protective mechanism of glycine needs to be further clarified. Our results showed that glycine supplementation promoted cumulus cell expansion and oocyte maturation. Detection of oocyte development ability showed that glycine significantly increased the cleavage rate and blastocyst rate during in vitro fertilization (IVF). SMART-seq revealed that this effect was related to glycine-mediated regulation of cell membrane structure and function. Exogenous addition of glycine significantly increased the levels of the anti-oxidant GSH and the expression of anti-oxidant-related genes (glutathione peroxidase 4 [GPX4], catalase [CAT], superoxide dismutase 1 [SOD1], superoxide dismutase 2 [SOD2], and mitochondrial solute carrier family 25, member 39 [SLC25A39]), decreased the lipid peroxidation caused by reactive oxygen species (ROS) and reduced the level of malondialdehyde (MDA) by enhancing the functions of mitochondria, peroxisomes and lipid droplets (LDs) and the levels of lipid metabolism-related factors (peroxisome proliferator activated receptor coactivator 1 alpha [PGC-1α], peroxisome proliferator-activated receptor γ [PPARγ], sterol regulatory element binding factor 1 [SREBF1], autocrine motility factor receptor [AMFR], and ATP). These effects further reduced ferroptosis and maintained the normal structure and function of the cell membrane. Our results suggest that glycine plays an important role in oocyte maturation and later development by regulating ROS-induced lipid metabolism, thereby protecting against biomembrane damage.


Production of high-quality gametes is the premise of livestock reproduction and conservation of germplasm resources, especially high-quality oocytes, as oocyte quality determines the quality of offspring. Due to the limitations in approaches and the number of mature oocytes in vivo, in vitro maturation (IVM) culture has become an important way to obtain mature oocytes. However, IVM-cultured oocytes are separated from the follicular microenvironment in vivo and are, thus, more vulnerable than in vivo oocytes to changes in the external environment. Our study was conducted to determine if exogenous supplementation of glycine, the highest content of amino acids in oviduct fluid and follicular fluid, can improve oocyte maturation efficiency in vitro, and analyze the mechanism of glycine. This study demonstrated that glycine can maintain redox balance and block reactive oxygen species-induced lipid peroxidation, thereby protecting against biomembrane damage and reducing the occurrence of ferroptosis to maintain normal oocyte development function. This study will provide a theoretical basis for preventing and improving oxidative damage during oocyte culture in vitro.


Asunto(s)
Antioxidantes , Técnicas de Maduración In Vitro de los Oocitos , Embarazo , Femenino , Porcinos , Animales , Especies Reactivas de Oxígeno/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Antioxidantes/metabolismo , Peroxidación de Lípido , Glicina/farmacología , Desarrollo Embrionario , Oocitos/fisiología , Blastocisto , Glutatión/metabolismo
2.
Probiotics Antimicrob Proteins ; 15(4): 912-924, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35138584

RESUMEN

We investigated the effects of dietary supplementation with Lactobacillus acidophilus and Bacillus subtilis on the intestinal immune response, intestinal barrier function, cecal microbiota profile, and metabolite profile in late-phase laying hens. Hens were divided into three groups and fed with the basal diet (NC group), basal diet supplementation with 250 mg/kg B. subtilis and L. acidophilus mixture powder (LD group), and basal diet supplementation with 500 mg/kg B. subtilis and L. acidophilus mixture powder (HD group), respectively. The results indicated that the dietary supplementation with L. acidophilus and B. subtilis increased the integrity of the intestinal barrier as evidenced by the significant increase in the number of ileal goblet cells and improve the expression of occludin, claudin-1, and ZO-1 genes in the HD group. Moreover, the levels of IL-6, TNF-α, and IFN-γ were significantly decreased in the LD and HD groups. The levels of immunoglobulin G (IgG) increased in the LD and HD group, and the levels of secretory immunoglobulin A (sIgA) increased with the HD treatment. Furthermore, 16 s rRNA sequencing revealed L. acidophilus in combination with B. subtilis increased the diversity of gut microbiota. The metabolomic analysis revealed beneficial changes in the amino acid metabolism and lipid metabolism (decrease in LysoPC and LysoPE levels). In conclusion, dietary supplementation with L. acidophilus and B. subtilis could improve intestinal barrier function and maintain immune homeostasis. These beneficial effects may be associated with the modulation of the intestinal microbiome and metabolites.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Animales , Femenino , Lactobacillus acidophilus , Bacillus subtilis/fisiología , Inmunidad Mucosa , Pollos/fisiología , Polvos/farmacología , Probióticos/farmacología , Probióticos/análisis , Dieta/veterinaria , Alimentación Animal/análisis , Suplementos Dietéticos/análisis
3.
Mol Nutr Food Res ; 66(1): e2100724, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34780105

RESUMEN

SCOPE: Dityrosine (DT), a marker of protein oxidation, is widely found in many high-protein foods. Dietary intake of DT induces myocardial oxidative stress injury and impairs energy metabolism. Lycopene is a common dietary supplement with antioxidant and mitochondrial-lipid homeostasis modulating abilities. This study aimed to examine the effects of lycopene on DT-induced disturbances in myocardial function and energy metabolism. METHODS AND RESULTS: Four-week-old C57BL/6J mice received intragastric administration of either tyrosine (420 µg kg-1 BW), DT (420 µg kg-1 BW), or lycopene at high (10 mg kg-1 BW) and low (5 mg kg-1 BW) doses for 35 days. Lycopene administration effectively reduced oxidative stress, cardiac fatty acid accumulation, and cardiac hypertrophy and improved mitochondrial performance in DT-induced mice. In vitro experiments in H9c2 cells showed that DT directly inhibited the activity of the respiratory chain complex, whereas oxidative phosphorylation and ß-oxidation gene expression is upregulated. Lycopene enhanced the activity of the complexes and inhibited ROS production caused by compensatory regulation. CONCLUSION: Lycopene improves DT-mediated myocardial energy homeostasis disorder by promoting the activity of respiratory chain complexes I and IV and alleviates the accumulation of cardiac fatty acids and myocardial hypertrophy.


Asunto(s)
Estrés Oxidativo , Tirosina , Animales , Ácidos Grasos/farmacología , Homeostasis , Licopeno/farmacología , Ratones , Ratones Endogámicos C57BL , Tirosina/análogos & derivados
4.
Biofactors ; 47(5): 788-800, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34128579

RESUMEN

Selenium (Se) plays a crucial role in intestinal health. However, the specific mechanism by which deficiency of Se causes intestinal damage remains unclear. This study was to explore whether Se deficiency can cause ER stress and induce apoptosis in swine small intestine. We established the Se deficiency swine model in vivo and the intestinal epithelial (IPEC-J2) cell Se deficiency model in vitro. The results of morphological observation showed that Se deficiency caused structural damage in intestinal villi and the decrease of goblet cell structure. The apoptotic characteristics such as nucleolar condensation, mitochondrial swelling, and apoptotic bodies were observed in the IPEC-J2 cells. The results of acridine orange/ethidium bromide and mitochondrial membrane potential fluorescence staining in vitro showed that there were more apoptotic cells in the Se-deficiency group than that in the control group. The protein and/or mRNA expression levels of Bax, Bcl-2, caspase 3, caspase 8, caspase 9, cytc, PERK, ATF6, IRE, XBP1, CHOP, GRP78, which are related to ER stress-apoptosis pathway, were significantly increased in the Se-deficient group which compared with the control group in vivo and in vitro were consistent. These results indicated that Se deficiency induced ER stress and increased the apoptosis in swine small intestine and IPEC-J2 cells and then caused the damage in swine small intestinal tissue. Besides, the results of gene expressions in our experiment proved that ER stress induced by Se deficiency promoted apoptosis. These results filled the blank in the mechanism of Se deficiency-induced intestinal injury in swine.


Asunto(s)
Apoptosis/fisiología , Estrés del Retículo Endoplásmico/fisiología , Intestino Delgado/fisiopatología , Selenio/deficiencia , Animales , Modelos Animales de Enfermedad , Porcinos
5.
J Cell Physiol ; 236(1): 157-177, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32542694

RESUMEN

Long noncoding RNAs (LncRNAs) have been demonstrated to be associated with a variety of myocardial diseases, but how LncRNAs regulate autophagy in selenium (Se)-deficient myocardial injury is infrequently reported. Here, we screened out a novel long noncoding RNA, microRNA, and ATG7 through transcriptomic results. We employed a Se-deficient chicken model in vivo, and primary cultured cardiomyocytes treated by correlation in vitro. The results showed that Se deficiency upregulated the expression of ATG7, and miR-17-5p inhibited cardiomyocyte autophagy by targeting ATG7. Furthermore, we found that LncRNA 0003250 regulated miR-17-5p, and thus affected the expression of ATG7 and autophagic cell death. Our present study proposed a novel model for the regulation of cardiomyocytes autophagy, which includes LncRNA 0003250, miR-17-5p and ATG7 in the chicken heart. Our conclusions may provide a feasible diagnostic tool for Se-deficient cardiomyocyte injury.


Asunto(s)
Autofagia/genética , Pollos/genética , Corazón/fisiopatología , MicroARNs/genética , ARN Largo no Codificante/genética , Selenio/deficiencia , Animales , Miocitos Cardíacos/patología , Transcriptoma/genética , Regulación hacia Arriba/genética
6.
J Inorg Biochem ; 193: 60-69, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30684759

RESUMEN

Our previous study revealed that selenium (Se) deficiency can cause myocardial injury through triggering autophagy. MicroRNAs (miRNAs) play crucial roles in autophagic cell death. However, the relationship between miRNAs and myocardial autophagy injury caused by Se deficiency remains unclear. We selected differential microRNA-215-5p (miR-215-5p) in Se-deficient myocardial tissue using high-throughput miRNA-sequencing. To further explore the role of miR-215-5p in myocardial injury, overexpression/knockdown of miR-215-5p in primary cardiomyocyte model was established by miRNAs interference technology. In this study, we report that miR-215-5p can promote myocardial autophagy by directly binding to the 3'untranslated region (3'UTR) of phosphatidylinositol-4, 5-bisphosphate 3-kinase (PI3K). Its target gene PI3K was confirmed by dual luciferase reporter assay, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot in cardiomyocytes. Our results showed that overexpression of miR-215-5p could trigger myocardial autophagy through PI3K-threonine-protein kinase (AKT)-target of rapamycin (TOR) pathway. Further studies revealed that autophagic cell death was dependent on the activation of extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 kinase (p38) and generation of reactive oxygen species (ROS) in overexpression of miR-215-5p in cardiomyocytes. On the contrary, miR-215-5p inhibitor can enhance cell survival capacity against autophagy by inhibiting ROS-mitogen-activated protein kinase (MAPK) pathways and activating the PI3K/AKT/TOR pathway in cardiomyocytes. Together, our findings support that miR-215-5p may modulate cell survival programs by regulating autophagy, and miR-215-5p acts as an autophagic regulator in the regulatory feedback loop that regulates cardiomyocyte survival by modulating the PI3K/AKT/TOR pathway and ROS-dependent MAPK pathways.


Asunto(s)
Autofagia/fisiología , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Sistema de Señalización de MAP Quinasas/fisiología , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Animales , Supervivencia Celular/fisiología , Pollos , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocitos Cardíacos/citología , Especies Reactivas de Oxígeno/metabolismo , Selenio/deficiencia
7.
Psychiatr Danub ; 27(2): 174-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26057313

RESUMEN

BACKGROUND: The aim of the current study was to observe the effects of Twenty-four Move Shadow Boxing combined with psychosomatic relaxation on depression and anxiety in patients with Type-2 Diabetes. SUBJECTS AND METHODS: One hundred and twenty (120) patients with Type-2 Diabetes and depressive/anxious symptoms were divided into intervention group (60 cases) and control group (60 cases) according to the minimum distribution principle of unbalanced indicators. Twenty-four Move Shadow Boxing group used this intervention combined with psychosomatic relaxation. Control group underwent conventional treatment. All the patients in the two groups completed the Self-rating Depression Scale (SDS) and Self-Rating Anxiety Scale (SAS) before and after treatment. RESULTS: Among the 52 people included in the statistical analysis, the recovery rate was 13.3%. The differences between depression and anxiety scores in the intervention group before and after treatment were statistically significant (P<0.001), whereas these differences were non-significant in the control group (P=0.123). After the treatment, the glycated hemoglobin reduction in the intervention group was greater than that of the control group (t=2.438, P=0.016). CONCLUSION: The combination of Twenty-four Move Shadow Boxing and psychosomatic relaxation has a beneficial auxiliary therapeutic effect on depression and anxiety accompanying Type-2 Diabetes.


Asunto(s)
Ansiedad/terapia , Depresión/terapia , Diabetes Mellitus Tipo 2/psicología , Terapia por Ejercicio/métodos , Terapia por Relajación/métodos , Anciano , Ansiedad/sangre , Boxeo , Terapia Combinada , Depresión/sangre , Diabetes Mellitus Tipo 2/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
8.
PLoS Pathog ; 10(5): e1004114, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24789335

RESUMEN

Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Farnesil Difosfato Farnesil Transferasa/antagonistas & inhibidores , Terapia Molecular Dirigida/métodos , Tripanocidas/uso terapéutico , Animales , Chlorocebus aethiops , Cristalografía por Rayos X , Difosfonatos/química , Difosfonatos/metabolismo , Difosfonatos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Farnesil Difosfato Farnesil Transferasa/química , Farnesil Difosfato Farnesil Transferasa/metabolismo , Humanos , Modelos Moleculares , Fosfatos de Poliisoprenilo/química , Fosfatos de Poliisoprenilo/metabolismo , Unión Proteica , Quinuclidinas/química , Quinuclidinas/metabolismo , Quinuclidinas/farmacología , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Tripanocidas/química , Tripanocidas/metabolismo , Tripanocidas/farmacología , Trypanosoma cruzi/enzimología , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA