RESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Morus alba L. has long been used for beauty in many Asian countries and regions, including anti-aging and hyperpigmentation. AIM OF THE STUDY: This study aimed at the inhibitory effect of Morus alba L. root on melanogenesis in B16F10 melanoma cells and the mechanism involved. MATERIALS AND METHODS: This study evaluated the anti-melanogenic effect of Morus alba L. root extract (MAR) on B16F10 melanoma cells by assessing cell viability, melanin accumulation, cellular tyrosinase activity, intra/inter-cellular S1P levels, cellular S1P-related metabolic enzyme activity, and western blot analysis. In addition, the potential S1P lyase (S1PL) inhibitory constituents in MAR were identified by LC-MS/MS. RESULTS: Without affecting the viability of B16F10 melanoma cells, MAR inhibited intracellular tyrosinase activity in a dose-dependent manner, thereby reducing the accumulation of melanin. MAR also downregulated the expression level of MITF via activating the ERK signaling pathway. Furthermore, MAR increased the intra/inter-cellular S1P by inhibiting S1PL. Several compounds with inhibitory S1PL activity have been identified in MAR, such as mulberroside A and oxyresveratrol. CONCLUSIONS: The anti-melanogenic effects of MAR mainly involve promoting MITF degradation mediated via S1P-S1PR3-ERK signaling through increasing cellular S1P levels by inhibiting S1PL activity.
Asunto(s)
Melanoma Experimental , Melanoma , Morus , Animales , Melaninas/metabolismo , Monofenol Monooxigenasa , Cromatografía Liquida , Espectrometría de Masas en Tándem , Transducción de Señal , Línea Celular Tumoral , Melanoma Experimental/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismoRESUMEN
Osteoporosis manifest in postmenopausal women is an osteolytic disease characterized by bone loss, leading to increased susceptibility to bone fractures and frailty. The use of complementary therapies to alleviate postmenopausal osteoporosis is fairly widespread among women. The current study examined that Pangasius hypophthalmus fish skin collagen hydrolysates (fsCH) inhibited ovariectomy (OVX)-induced bone loss by conducting inter-comparative experiments for anti-osteoporotic activity among 206-618 mg/kg fsCH, 2 mg/kg isoflavone, 15 mg/kg glycine-proline-hydroxyproline (GPH) tripeptide, and calcium lactate. Surgical estrogen loss of mice for 8 weeks reduced serum 17ß-estradiol levels with uterus atrophy, which was ameliorated by orally administering fsCH or isoflavone to mice. Similar to isoflavone, fsCH containing GPH-enhanced bone mineral density reduced levels of cathepsin K and proton-handling proteins, and elevated collagen 1 level in OVX bones. The treatment with fsCH and isoflavone enhanced the serum levels of collagen synthesis-related procollagen type 1 carboxy/amino-terminal propeptides reduced by OVX, whereas serum levels of osteocalcin and alkaline phosphatase, as well as collagen breakdown-related carboxy/amino-terminal telopeptides of type 1 collagen were reduced in OVX mice treated with fsCH, isoflavone, and calcium lactate. The trabecular bones were newly formed in OVX bones treated with isoflavone and fsCH, but not with calcium lactate. However, a low-dose combination of fsCH and calcium lactate had a beneficial synergy effect on postmenopausal osteoporosis. Furthermore, similar to isoflavone, 15-70 µg/mL fsCH, with its constituents of GPH and dipeptides of glycine-proline and proline-hydroxyproline, enhanced osteogenesis through stimulating differentiation, matrix mineralization, and calcium deposition of MC3T3-E1 osteoblasts. Accordingly, the presence of fsCH may encumber estrogen deficiency-induced bone loss through enhancing osteoclastogenic differentiation and matrix collagen synthesis. Therefore, fsCH may be a natural compound retarding postmenopausal osteoporosis and pathological osteoresorptive disorders.
RESUMEN
The anti-obesity effects of RL (a 3:1 mixture of Panax ginseng saponin fractions and Glycyrrhiza glabra L. extracts) on 3T3-L1 adipocytes and C57BL/6J obese mice were evaluated at different concentrations. We investigated the anti-obesity effects of RL through lipid accumulation inhibition rate, serum lipid composition analysis, adipose tissue size, adipogenic transcription factors and AMPK pathway. RL inhibited the lipid accumulation of 3T3-L1 adipocytes in a dose-dependent manner at concentrations of 50-200 µg/mL without cytotoxicity (50-400 µg/mL). Oral administration of RL at the highest concentration (400 mg/kg/day) did not cause significant liver toxicity in high-fat diet-induced obese mice. RL stimulated adiponectin secretion in a dose-dependent manner and primarily mediates the AMPK pathway to inhibit triglyceride synthesis and attenuate adipocyte hypertrophy. RL significantly reduced weight in obese mice, but none of the body weight, adipose tissue weight, serum triglyceride level, and AMPK pathway activation degree showed any difference between dosing concentrations of 200 and 400 mg/kg/day. Therefore, 200 mg/kg/day of RL is the optimal preclinical concentration, which can be a reference concentration for conversion into a human clinical trial dose.
Asunto(s)
Fármacos Antiobesidad/farmacología , Mezclas Complejas/farmacología , Glycyrrhiza/química , Obesidad/prevención & control , Panax/química , Extractos Vegetales/farmacología , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Adiponectina/metabolismo , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Lipogénesis/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/terapia , Pérdida de Peso/efectos de los fármacosRESUMEN
Anti-obesity activities of Korean red ginseng saponin fraction (RGS) and/or Glycyrrhiza glabra L. extract (GG) were investigated in 3T3-L1 adipocytes and high-fat diet-induced C57BL/6J obese mice. RGS and GG extracts were mixed at a mass ratio of 3:1 (SG31), 1:1 (SG11), or 1:3 (SG13). SG31 showed the highest anti-obesity activity among the three different mass ratios of RGS and GG extracts. SG31 showed higher inhibition efficiency on triglyceride (TG) accumulation than either single extract in 3T3-L1 adipocytes and without any cytotoxicity. It also decreases the expression of adipogenic and lipogenic genes such as C/EBPα and SREBP-1c (sterol regulatory element-binding protein 1c). In the obese induced mouse model, SG31 significantly reduced white adipose tissue weight and body weight, attenuated dyslipidemia, and decreased serum TG levels. In some indices, the activity of SG31 was even higher compared with Garcinia Cambogia water extract, a positive control. The possible mechanism by which SG31 causes the above results was by activating the AMP-activated protein kinase (AMPK) pathway and stimulating the secretion of adiponectin in adipose tissue to regulate energy metabolism balance, inhibit TG formation, and promote ß-oxidation of fatty acids. Therefore, SG31 may have efficacy as an anti-obesity functional food or raw material if the results can be confirmed in human studies.
Asunto(s)
Adipocitos/efectos de los fármacos , Fármacos Antiobesidad/administración & dosificación , Glycyrrhiza/química , Obesidad/tratamiento farmacológico , Panax/química , Extractos Vegetales/administración & dosificación , Células 3T3-L1 , Adipocitos/metabolismo , Animales , Fármacos Antiobesidad/análisis , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Humanos , Lipogénesis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/genética , Obesidad/metabolismo , Obesidad/fisiopatología , PPAR gamma/genética , PPAR gamma/metabolismo , Extractos Vegetales/análisis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Triglicéridos/sangreRESUMEN
Prior studies show that Borago officinalis L. (BO) can suppress lipid accumulation in 3 T3-L1 adipocytes. Similarly, we recently revealed that Erigeron annuus L. Pers (EA) can significantly diminish both lipid accumulation and adipocyte differentiation in 3 T3-L1 cells through an AMPK (AMP-activated protein kinase)-dependent mechanism. Accordingly, the objective of this present study was to evaluate the anti-obesity activity of EA and/or BO using an animal model of obesity. Obesity was induced in C57BL/6 J mice by feeding a high-fat diet (HFD; 60 kcal% fat) for 3 weeks, followed by administration of EA and/or BO (100-200 mg/kg body weight) or positive control Garcinia Cambogia (GC) (100 mg/kg body weight) for an additional 8 weeks. The anti-obesity effect of EA and/or BO was assessed by measuring body weight, adipocyte size, lipid accumulation, and expression level of genes associated with adipogenesis. We found the administration of EA and/or BO significantly attenuated increases in body weight gain, adipocyte size, and lipid accumulation in obese mice induced by HFD. In addition, western blot analysis revealed that HFD-mediated increases in expressions levels of adipogenic genes such as PPARγ, C/EBPα, and SREBP-1c were diminished by EA and/or BO. Moreover, EA and/or BO significantly stimulated the production of adiponectin, a unique adipokine known to stimulate the breakdown of fat/lipids, whereas adiponectin levels were reduced in mice fed a HFD. Notably, a combination of EA and BO was more effective at modulating such parameters than EA or BO alone. Taken together, these results demonstrate that an anti-obesity effect of EA and/or BO can reduce adipocyte hypertrophy and modulate the expression of adipogenesis-associated genes.
Asunto(s)
Fármacos Antiobesidad/farmacología , Borago , Erigeron , Obesidad/dietoterapia , Extractos Vegetales/farmacología , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Extractos Vegetales/administración & dosificaciónRESUMEN
Curcumin (Cum), the principal polyphenolic curcuminoid, obtained from the turmeric rhizome Curcuma longa, is recently reported to have potential antitumor effects in vitro and in vivo. Docetaxel (Doc) is considered as first-line chemotherapy for the treatment of non-small cell lung cancer. Here we report for the first time that Cum could synergistically enhance the in vitro and in vivo antitumor efficacy of Doc against lung cancer. In the current study, combination index (CI) is calculated in both in vitro and in vivo studies to determine the interaction between Cum and Doc. In the in vitro cytotoxicity test, media-effect analysis clearly indicated a synergistic interaction between Cum and Doc in certain concentrations. Moreover, in vivo evaluation further demonstrated the superior anticancer efficacy of Cum + Doc compared with Doc alone by intravenous delivery in an established A549 transplanted xenograft model. Results showed that Cum synergistically increased the efficacy of Doc immediately after 4 days of the initial treatment. Additionally, simultaneous administration of Cum and Doc showed little toxicity to normal tissues including bone marrow and liver at the therapeutic doses. Therefore, in vitro and in vivo evaluations demonstrated the satisfying synergistic antitumor efficacy of Cum and Doc against lung cancer and the introduction of Cum in traditional chemotherapy is a most promising way to counter the spread of non-small cell lung cancer.