Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122902, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37244026

RESUMEN

Chinese herbal medicine is receiving more and more attention at home and abroad as a traditional Chinese clinical medicine. To make herbal medicines can be preserved for a long time, they are usually fumigated with sulfur. However, after the medicinal materials have been fumigated with sulfur, SO2 residues will remain, which, when exposed to water, will create sulfites and bisulfites. Excessive sulfites can cause a variety of severe ailments and diminish the quality and effectiveness of therapeutic plants. Therefore, developing an effective SO32-/HSO3- detection method is important. This study chose coumarin derivatives as fluorescent acceptors and pyridinium acrylonitrile structures as fluorescent donors to create a ratiometric fluorescent probe CPA using the fluorescence resonance energy transfer (FRET) effect. The probe CPA exhibited a fluorescence transition from red to green under excitation at 405 nm with an interval of 149 nm, a reaction time of less than 1 min, a low detection limit of 86 nM, and the probe CPA has good specific recognition of SO32- and is resistant to interference. In addition, CPA has low in vitro cytotoxicity and can successfully detect endogenous sulfites in living cells.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Medicina Tradicional China , Colorimetría/métodos , Sulfitos/química , Dióxido de Azufre
2.
Sci Total Environ ; 870: 161865, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36716869

RESUMEN

Soil fertility can be increased by returning crop residues to fields due to the cooperative regulation of microbial metabolism of carbon (C) and nutrients. However, the dose-effect of straw on the soil C and nutrient retention and its underlying coupled microbial metabolic processes of C and nutrients remain poorly understood. Here, we conducted a comprehensive study on soil nutrients and stoichiometry, crop nutrient uptake and production, microbial metabolic characteristics and functional attributes using a long-term straw input field experiment. We estimated the microbial metabolic limitations and efficiency of C and nitrogen (N) use (CUE and NUE) via an enzyme-based vector-TER model, biogeochemical-equilibrium model and mass balance equation, respectively. In addition, the absolute abundances of 20 functional genes involved in the N- and P-cycles were quantified by quantitative PCR-based chip technology. As expected, straw input significantly increased C and N stocks, C: nutrients, crop nutrient uptake and growth. However, the C sequestration efficiency decreased by approximately 6.1 %, and the N2O emission rate increased by 0.5-1.0 times with the increase in straw input rate. Interestingly, the microbial metabolism was more limited by P when straw input was <8 t ha-1 but was reversed when straw input was 12 t ha-1. The enhanced nutrient limitation reduced both the CUE and the NUE of microbes and then upregulated genes associated with the hydrolysis of C, the mineralization of N and P, and denitrification, which consequently influenced C and N losses as well as crop growth. This study highlights that soil C and nutrient cycling are strongly regulated by microbial metabolic limitation, suggesting that adding the appropriate limiting nutrients to reduce nutrient imbalances caused by straw input is conducive to maximizing the ecological benefits of straw return.


Asunto(s)
Secuestro de Carbono , Nitrógeno , Nitrógeno/análisis , Agricultura , Fósforo/metabolismo , Suelo/química , Nutrientes , Carbono/química , Microbiología del Suelo , Fertilizantes/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA