Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Revista
Tipo del documento
Intervalo de año de publicación
1.
PeerJ ; 10: e13076, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341057

RESUMEN

Background: Phosphorus (P) is abundant in soils, including organic and inorganic forms. Nevertheless, most of P compounds cannot be absorbed and used by plants. Aspergillus niger v. Tiegh is a strain that can efficiently degrade P compounds in soils. Methods: In this study, A. niger xj strain was mutated using Atmospheric Room Temperature Plasma (ARTP) technology and the strains were screened by Mo-Sb Colorimetry with strong P-solubilizing abilities. Results: Compared with the A. niger xj strain, setting the treatment time of mutagenesis to 120 s, four positive mutant strains marked as xj 90-32, xj120-12, xj120-31, and xj180-22 had higher P-solubilizing rates by 50.3%, 57.5%, 55.9%, and 61.4%, respectively. Among them, the xj120-12 is a highly efficient P solubilizing and growth-promoting strain with good application prospects. The growth characteristics such as plant height, root length, and dry and fresh biomass of peanut (Arachis hypogaea L.) increased by 33.5%, 43.8%, 43.4%, and 33.6%, respectively. Besides available P, the chlorophyll and soluble protein contents also vary degrees of increase in the P-solubilizing mutant strains. Conclusions: The results showed that the ARTP mutagenesis technology can improve the P solubilization abilities of the A. niger mutant strains and make the biomass of peanut plants was enhanced of mutant strains.


Asunto(s)
Aspergillus niger , Fósforo , Aspergillus niger/genética , Fósforo/metabolismo , Temperatura , Fitomejoramiento , Mutación , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA