Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Exp Ther Med ; 11(2): 415-420, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26893624

RESUMEN

Patients with septic shock suffer from high mortality rates, particularly when complicated by severe myocardial depression which is characterized by hypotension and a reduction in cardiac output. Inflammation is an important factor involved in the early stages of sepsis. The aim of the present study was to investigate the effect of the Chinese herbal compound puerarin (1, 5, 10, 20 and 40 µM) on cardiomyocyte inflammatory response in a sepsis model using H9c2 cardiomyocytes stimulated with 1 µg/ml lipopolysaccharide (LPS). The mRNA expression levels of tumor necrosis factor (TNF)-α and interleukin (IL)-ß were evaluated using reverse transcription-quantitative polymerase chain reaction. In addition, the protein expression levels of various factors were determined using western blot analysis. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was used to evaluate the apoptosis rates in the various groups, and immunocytochemical analysis was employed to determine the effect of puerarin on the nuclear translocation of p65 protein. The present study demonstrated that LPS stimulation increased IL-1ß and TNF-α mRNA expression levels, as compared with the controls (P<0.05). Following treatment with various concentrations of puerarin, the expression levels of IL-1ß and TNF-α were markedly blunted, particularly in the LPS + 40 µM puerarin group (P<0.05 vs. the LPS group). Furthermore, puerarin administration significantly inhibited LPS-induced apoptosis in H9c2 cardiomyocytes, as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining (TUNEL positive cells: LPS + 40 µM puerarin group, 5.5% vs. LPS group, 10.5%; P<0.01). In addition, puerarin significantly decreased LPS-induced phosphorylated nuclear factor (p-NF)-κB p65 and Bax expression levels, and increased the expression levels of Bcl-2, as compared with the LPS group (P<0.05). These data indicated that puerarin may serve as a valuable protective agent against cardiovascular inflammatory diseases.

2.
Mol Med Rep ; 13(1): 980-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26648261

RESUMEN

Shensongyangxin (SSYX) is a medicinal herb, which has long been used in traditional Chinese medicine. Various pharmacological activities of SSYX have been identified. However, the role of SSYX in cardiac hypertrophy remains to be fully elucidated. In present study, aortic banding (AB) was performed to induce cardiac hypertrophy in mice. SSYX (520 mg/kg) was administered by daily gavage between 1 and 8 weeks following surgery. The extent of cardiac hypertrophy was then evaluated by pathological and molecular analyses of heart tissue samples. In addition, in vitro experiments were performed to confirm the in vivo results. The data of the present study demonstrated that SSYX prevented the cardiac hypertrophy and fibrosis induced by AB, as assessed by measurements of heart weight and gross heart size, hematoxylin and eosin staining, cross­sectional cardiomyocyte area and the mRNA expression levels of hypertrophic markers. SSYX also inhibited collagen deposition and suppressed the expression of transforming growth factor ß (TGFß), connective tissue growth factor, fibronectin, collagen Ⅰα and collagen Ⅲα, which was mediated by the inhibition of the TGFß/small mothers against decapentaplegic (Smad) signaling pathway. The inhibitory action of SSYX on cardiac hypertrophy was mediated by the inhibition of Akt signaling. In vitro investigations in the rat H9c2 cardiac cells also demonstrated that SSYX attenuated angiotensin II­induced cardiomyocyte hypertrophy. These findings suggested that SSYX attenuated cardiac hypertrophy and fibrosis in the pressure overloaded mouse heart. Therefore, the cardioprotective effect of SSYX is associated with inhibition of the Akt and TGFß/Smad signaling pathways.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Medicamentos Herbarios Chinos/administración & dosificación , Medicina Tradicional China , Miocitos Cardíacos/efectos de los fármacos , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Presión , Transducción de Señal/efectos de los fármacos , Proteína Smad2/biosíntesis , Factor de Crecimiento Transformador beta/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA