Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Anim Nutr ; 15: 58-70, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37818178

RESUMEN

An 8-week feeding trial was conducted in Pacific white shrimp (Litopenaeus vannamei) to evaluate the effects of dietary choline supplementation on choline transport and metabolism, hepatopancreas histological structure and fatty acid profile, and regulation of lipid metabolism. Six isonitrogenous and isolipidic diets were formulated to contain different choline levels of 2.91 (basal diet), 3.85, 4.67, 6.55, 10.70 and 18.90 g/kg, respectively. A total of 960 shrimp (initial weight, 1.38 ± 0.01 g) were distributed randomly into twenty-four 250-L cylindrical fiber-glass tanks, with each diet assigned randomly to 4 replicate tanks. The results indicated that dietary choline significantly promoted the deposition of choline, betaine and carnitine (P < 0.05). The diameters and areas of R cells, total lipid and triglyceride contents in hepatopancreas, and triglyceride and non-esterified fatty acid contents in hemolymph were negatively correlated with dietary choline level. The contents of functional fatty acids in hepatopancreas, the activity of acetyl-CoA carboxylase (Acc), and the mRNA expression of fas, srebp and acc were highest in shrimp fed the diet containing 4.67 g/kg choline, and significantly higher than those fed the diet containing 2.91 g/kg, the lowest level of choline (P < 0.05). The number of R cells, content of very low-density lipoprotein (VLDL), activities of carnitine palmitoyl-transferase (Cpt1), lipoprotein lipase and hepatic lipase, and the mRNA expression levels of cpt1, fabp, fatp, ldlr, and ampk in hepatopancreas increased significantly as dietary choline increased (P < 0.05). In addition, hepatopancreas mRNA expression levels of ctl1, ctl2, oct1, badh, bhmt, ck, cept, and cct were generally up-regulated as dietary choline level increased (P < 0.01). In conclusion, dietary choline promoted the deposition of choline and its metabolites by up-regulating genes related to choline transport and metabolism. Moreover, appropriate dietary choline level promoted the development of hepatopancreas R cells and maintained the normal accumulation of lipids required for development, while high dietary choline not only promoted hepatopancreas lipid export by enhancing VLDL synthesis, but also promoted fatty acid ß-oxidation and inhibited de novo fatty acid synthesis by activating the Ampk/Srebp signaling pathway. These findings provided further insight and understanding of the mechanisms by which dietary choline regulated lipid metabolism in L. vannamei.

2.
Carbohydr Polym ; 300: 120237, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36372504

RESUMEN

The effects of dietary chitosan (0, 2, 4, 6, 8 and 10 g/kg) on the growth, health condition and disease resistance of golden pompano Trachinotus ovatus were evaluated. Dietary chitosan significantly enhanced weight gain, with the highest observed in fish fed the 6 g/kg chitosan diet. This chitosan level significantly promoted gut health by increasing villus length, lipase and protease activities and intestinal barrier-related genes expression. Meanwhile, dietary 6 g/kg chitosan improved the inflammatory response and anti-oxidative capacity of fish by regulating the expression of genes involved in NF-κB pathway and Nrf2 pathway, respectively. Furthermore, after challenge with Vibrio harveyi for 2 weeks, the survival rate increased significantly when dietary chitosan level was 6 g/kg. Overall, our results indicate that 6 g/kg chitosan is the optimal dose for enhancing growth, health and disease resistance of fish, but excessive chitosan (10 g/kg) weakens its beneficial effects.


Asunto(s)
Quitosano , Enfermedades de los Peces , Perciformes , Vibriosis , Animales , Resistencia a la Enfermedad , Quitosano/farmacología , Perciformes/fisiología , Alimentación Animal/análisis , Enfermedades de los Peces/tratamiento farmacológico , Suplementos Dietéticos , Dieta , Peces , Estado de Salud , Inmunidad Innata
3.
Fish Shellfish Immunol ; 131: 827-837, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36334698

RESUMEN

The objective of the present study was to evaluate the effects of dietary choline levels on growth performance, antioxidant capacity, innate immunity and hemocyte apoptosis of Litopenaeus vannamei. Six isonitrogenous and isolipidic diets were formulated to contain different choline levels: 2.91 (basal diet), 3.85, 4.67, 6.55, 10.70 and 18.90 g kg-1choline, respectively. The results indicated that shrimp fed diet with 4.67 g kg-1 choline had the highest final body weight (FBW), percent weight gain (PWG), specific growth rate (SGR), feed efficiency (FE), and activities of alkaline phosphatase (AKP) and phenoloxidase (PO) in hemolymph among all treatments. Shrimp fed diet with 18.90 g kg-1 choline exhibited significantly lower crude lipid in hepatopancreas than those fed diets with 2.91, 3.85, 4.67 and 6.55 g kg-1 choline (P < 0.05). The concentration of reactive oxygen species (ROS) and apoptosis rate in hemocytes significantly decreased with the increase of dietary choline levels (P < 0.05). Shrimp fed diets with 6.55, 10.70 and 18.90 g kg-1 choline had significantly higher scavenging ability of hydroxyl radical (SAHR) and total antioxidant capacity (T-AOC) in hemolymph than those fed diet with 2.91 g kg-1 choline (P < 0.05). Dietary choline supplementation down-regulated the expression of genes related to apoptosis such as caspase-1, caspase-3, caspase-8, p53, and p38MAPK in hemocytes (P < 0.05), while up-regulated the expression of anti-apoptosis gene bcl2 in hemocytes (P < 0.05). Overall, the results of the present study demonstrated that appropriate dietary choline could improve growth performance and feed utilization, enhance antioxidant capacity and innate immunity, and mitigate apoptosis in Litopenaeus vannamei. Moreover, the inhibition of hemocyte apoptosis by dietary choline may be regulated by the p38MAPK-p53 signaling pathway.


Asunto(s)
Antioxidantes , Penaeidae , Animales , Antioxidantes/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Alimentación Animal/análisis , Colina/farmacología , Dieta/veterinaria , Inmunidad Innata , Transducción de Señal , Suplementos Dietéticos
5.
Fish Physiol Biochem ; 48(4): 955-971, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35771297

RESUMEN

This study was conducted to evaluate the effects of different dietary lipid sources on growth performance, lipid metabolism, and physiological stress responses including oxidative stress (OS) and endoplasmic reticulum stress (ERS) of juvenile Acanthopagrus schlegelii (initial weight 0.88 ± 0.01 g) fed a high-fat diet (HFD). Four isonitrogenous and isolipidic experimental diets containing different lipid sources were formulated: fish oil (FO), palm oil (PO), linseed oil (LO), and soybean oil (SO), respectively. Results indicated that fish fed HFD supplemented with FO significantly improved growth than SO treatment. The high concentrations of aspartate aminotransferase and alanine transaminase were found in HFD supplemented with SO. Fish fed dietary LO supplementation showed significantly lower serum cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein contents than those in SO group. Likewise, hepatic paraffin section analysis indicated that HFD with PO or SO supplementation increased fat drop. The expression levels of peroxisome proliferators-activated receptor alpha (pparα) and silent regulator 1 (sirt1) were significantly elevated by HFD with FO or LO supplementation. Additionally, the key marker of OS malonaldehyde was significantly increased in FO and SO groups. ERS-related genes were activated in dietary PO or SO supplementation and, hence, triggering inflammation and apoptosis by promoting the expression levels of nuclear factor kappa B (nf-κb) and c-Jun N-terminal kinase (jnk). Overall, the present study reveals that lipid metabolic disorders and physiological stress caused by a HFD have significant lipid source-dependent effects, which have important guiding significance for the use of HFD in marine fish.


Asunto(s)
Enfermedades Metabólicas , Perciformes , Dorada , Animales , Dieta Alta en Grasa , Aceites de Pescado/farmacología , Aceite de Linaza/farmacología , Metabolismo de los Lípidos , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , Aceite de Palma/farmacología , Perciformes/fisiología , Aceite de Soja/farmacología , Estrés Fisiológico
6.
Front Nutr ; 9: 855369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571938

RESUMEN

Salinity is an important environmental factor that can affect the metabolism of aquatic organisms, while cholesterol can influence cellular membrane fluidity which are vital in adaption to salinity changes. Hence, a 4-week feeding trial was conducted to evaluate the effects of water salinity (normal 23 psu and low 5 psu) and three dietary cholesterol levels (CH0.16, 0.16%, CH1.0, 1.0% and CH1.6, 1.6%) on osmoregulation, cholesterol metabolism, fatty acid composition, long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis, oxidative stress (OS), and endoplasmic reticulum stress (ERS) of the euryhaline fish black seabream (Acanthopagrus schlegelii). The results indicated that in low salinity, fish fed with the CH1.0 diet improved ion reabsorption and osmoregulation by increased Na+ concentration in serum as well as expression levels of osmoregulation-related gene expression levels in gills. Both dietary cholesterol level and water salinity significantly affected most cholesterol metabolic parameters in the serum and tissues, and the results showed that low salinity promoted cholesterol synthesis but inhibited cholesterol catabolism. Besides, in low salinity, hepatic expression levels of LC-PUFA biosynthesis genes were upregulated by fed dietary cholesterol supplementation with contents of LC-PUFAs, including EPA and DHA being increased. Malondialdehyde (MDA) was significantly increased in low-salinity environment, whereas MDA content was decreased in fish fed with dietary CH1.0 by activating related antioxidant enzyme activity and gene expression levels. A similar pattern was recorded for ERS, which stimulated the expression of nuclear factor kappa B (nf-κb), triggering inflammation. Nevertheless, fish reared in low salinity and fed with dietary CH1.0 had markedly alleviated ERS and downregulated gene expression levels of pro-inflammatory cytokines. Overall, these findings demonstrate that cholesterol, as an important nutrient, plays vital roles in the process of adaptation to low salinity of A. schlegelii, and provides a new insight into underlying adaptive strategies of euryhaline marine fish reared in low salinity.

7.
Food Funct ; 13(11): 6362-6372, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35612417

RESUMEN

An 8-week feeding experiment was conducted to appraise the influence of dietary vitamin K3 on the growth performance, antioxidant capacities, immune responses, mitophagy and glucose metabolism in Litopenaeus vannamei. Six diets containing graded dietary vitamin K3 (0.40(control), 9.97, 20.29, 39.06, 79.81 and 156.02 mg kg-1 of vitamin K3, respectively) levels were formulated. A total of 900 shrimp with 0.90 g initial weight were randomly assigned to six diets with three replications. Our results revealed that diets supplemented with 9.97-156.02 mg kg-1 vitamin K3 didn't affect the growth performance in L. vannamei. In general, compared with the control group, 39.06 mg kg-1 vitamin K3 group significantly increased (P < 0.05) the total antioxidative capacity, and the activities of catalase, glutathione, nitric oxide synthase, alkaline phosphatase and acid phosphatase in serum and hepatopancreas. 39.06 mg kg-1 vitamin K3 group significantly decreased (P < 0.05) the malondialdehyde in serum and hepatopancreas. The mRNA levels of antioxidant and immune related genes were increased synchronously (P < 0.05). In addition, 39.06 mg kg-1 vitamin K3 group increased glycogen content and levels of mitophagy (pink1, ampkα, parkin, lc3, atg13, atg12) genes. Expression levels of glucose transport related gene (glut1), glycolysis related genes (hk, pfk), glycogen synthesis related genes (gsk-3ß, gys), insulin-like peptides (ILPs)/AKT/PI3K pathway related genes (insr, irsl, akt, pi3k, pdpk1) were increased in the hepatopancreas of 39.06 mg kg-1 vitamin K3 group. In conclusion, the present results indicated that although dietary supplementing vitamin K3 had no influence on the growth performance, 39.06 mg kg-1 vitamin K3 could activate ampkα/pink1/parkin mediated mitophagy, improve antioxidant capacity and immune response. Moreover, vitamin K3 could trigger ILPs/AKT/PI3K signaling pathways and influence glucose metabolism in L. vannamei. This finding would help to advance the field of vitamin K3 nutrition and guide the development of future crustacean feeds.


Asunto(s)
Antioxidantes , Penaeidae , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Dieta , Suplementos Dietéticos/análisis , Glucosa , Glucógeno , Glucógeno Sintasa Quinasa 3 beta , Inmunidad Innata , Mitofagia , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt , Ubiquitina-Proteína Ligasas , Vitamina K 3
8.
Int J Biol Macromol ; 207: 850-858, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35364191

RESUMEN

It is generally accepted that Astragalus polysaccharides (APS) supplementation can makes beneficial effects to fish. However, the adverse effects of APS to fish remains poorly understood. In the present study, Asian seabass Lates calcarifer were studied to assess the influence of different doses of APS on growth, health and resistance to Vibrio harveyi. Results showed that supplemental APS with 0.10 to 0.20% significantly boosted the growth performance, the protease and lipase activities of L. calcarifer. Compared with control diet, the villus length of L. calcarifer fed with APS supplemented diets was significantly higher. L. calcarifer fed with APS supplementation diets also significantly facilitated the antioxidant capacity and immune function. Meanwhile, supplemental APS with 0.10 to 0.15% significantly promoted liver health by up-regulating the expression of anti-inflammatory cytokines and down-regulating the expression of pro-inflammatory cytokines. Furthermore, survival rate of L. calcarifer challenged with V. harveyi was higher in diets supplemented with APS compared to the control. However, 0.20% APS significantly hindered the growth performance and caused immunostimulatory fatigue in L. calcarifer compared to 0.10% APS. Taken together, the present study demonstrates that supplementation APS with 0.10% is the optimal level for promoting the growth performance, health and resistance to V. harveyi of L. calcarifer, while 0.20% APS exerts adverse effects on L. calcarifer. Our findings provide novel recommendations for the application of APS supplementation in farmed fish.


Asunto(s)
Planta del Astrágalo , Enfermedades de los Peces , Perciformes , Vibrio , Alimentación Animal/análisis , Animales , Citocinas , Carbohidratos de la Dieta , Suplementos Dietéticos , Peces , Polisacáridos/farmacología
9.
Mar Pollut Bull ; 176: 113421, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35183027

RESUMEN

So far, the adverse effects of excess Fe in shrimp have been ignored for years as it was thought that extra Fe supplementation was not needed in the practical diets. Nowadays, Fe concentration in commercial shrimp feed from feed enterprises could be around 301.34-545.5 mg/kg, which is mainly due to the fish meal containing up to 1500 mg/kg Fe. Therefore, the purpose of this experiment was to investigate the effects of Fe supplementation on the growth performance, tissue Fe deposition, hepatopancreas lipid metabolism, intestinal function in L. vannamei. The results showed that although growth performance was not influenced by the dietary Fe supplementation, excess Fe supplementation (955.00 mg/kg) significantly increased hepatopancreas Fe deposition and induced lipolysis. Moreover, excess Fe supplementation impaired intestinal immune function and disrupted microbiota homeostasis. These findings might provide partial theoretical evidence for the effect of dietary Fe supplementation on physiological metabolism in L. vannamei.


Asunto(s)
Hepatopáncreas , Penaeidae , Alimentación Animal/análisis , Animales , Dieta , Suplementos Dietéticos , Hepatopáncreas/metabolismo , Hierro/metabolismo , Lipólisis
10.
Br J Nutr ; 128(5): 793-801, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34879881

RESUMEN

An 8-week feeding trial was conducted to investigate the effects of dietary vitamin D3 supplementation on the growth performance, tissue Ca and P concentrations, antioxidant capacity, immune response and lipid metabolism in Litopenaeus vannamei larvae. A total of 720 shrimp (initial weight 0·50 ± 0·01 g) were randomly distributed into six treatments, each of which had three duplicates of forty shrimp per duplicate. Six isonitrogenous and isolipidic diets were formulated to contain graded vitamin D3 (0·18, 0·23, 0·27, 0·48, 0·57 and 0·98 mg/kg of vitamin D3, measured) supplementation levels. The results revealed that L. vannamei fed diet containing 0·48 mg/kg of vitamin D3 achieved the best growth performance. Compared with the control group, supplementing 0·48 mg/kg of vitamin D3 significantly increased (P < 0·05) the activities of catalase, total antioxidative capacity, alkaline phosphatase and acid phosphatase in serum and hepatopancreas. Expression levels of antioxidant and immune-related genes were synchronously increased (P < 0·05). Carapace P and Ca concentrations were increased (P < 0·05) with the increased vitamin D3 supplementation levels. Further analysis of lipid metabolism-related genes expression showed that shrimp fed 0·48 mg of vitamin D3 per kg diet showed the highest value in the expression of lipid synthesis-related genes, while shrimp fed 0·98 mg of vitamin D3 per kg diet showed the highest value in the expression of lipolysis-related genes. In conclusion, the results of present study indicated that dietary supplementation of 0·48 mg/kg of vitamin D3 could increase Ca and P concentrations, improve antioxidant capacity and immune response, and influence lipid metabolism in L. vannamei.


Asunto(s)
Antioxidantes , Metabolismo de los Lípidos , Animales , Antioxidantes/metabolismo , Larva , Inmunidad Innata , Dieta , Suplementos Dietéticos/análisis , Vitamina D/farmacología , Alimentación Animal/análisis
11.
Aquac Nutr ; 2022: 6038613, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37346375

RESUMEN

An eight-week feeding trail was carried out to investigate the impacts of different dietary arachidonic acid (ARA) supplementations on growth performance, antioxidant capacity, tissue fatty acid profiles, and lipid metabolism of mud crab (Scylla paramamosain) juvenile. Six isonitrogenous (480 g kg-1 crude protein) and isolipidic (80 g kg-1 crude lipid) diets were formulated to contain 0.40, 2.50, 4.60, 8.90, 12.50, and 15.70 g ARA kg-1 (dry matter), respectively. Each experimental treatment included 24 mud crab juveniles (initial weight 11.29 ± 0.09 g) and was assigned to triplicate groups (n = 3). Crabs fed diets with 2.50, 4.60, and 8.90 g kg-1 ARA presented significantly higher percent weight gain (PWG) and specific growth rate (SGR) than those fed the other diets. Based on two-slope broken-line and quadratic curve regression analysis of PWG against dietary ARA levels, optimal dietary ARA levels were determined to be 5.20 g kg-1 and 6.20 g kg-1, respectively. Crabs fed with 4.60 g kg-1 ARA diet showed the lowest activities of alanine aminotransferase (ALT) as well as aspartate aminotransferase (AST) in hemolymph among all treatments. In hemolymph and hepatopancreas, total antioxidant capacity (T-AOC), the activities of total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-Px) as well as the contents of reduced glutathione (GSH) rose first and then dropped with the increase of dietary ARA levels, while the concentration of malondialdehyde (MDA) showed an opposite trend. Tissue fatty acid profiles reflected diets fatty acid compositions. The ARA contents in hepatopancreas and muscle significantly increased with the increase of dietary ARA levels. Furthermore, the areas of blasenzellen (B) cells and restzellen (R) cells were significantly downregulated with the increase of dietary ARA levels. Crabs fed with 0.40 g kg-1 ARA diet showed significantly higher gene expression levels of fatty acid synthase (fas) as well as acetyl-CoA carboxylase (acc) among all treatments. Relative gene expression levels of 6-phosphogluconate dehydrogenase (6pgd) as well as glucose-6-phosphate dehydrogenase (g6pd) have been significantly upregulated in 0.40 and 2.50 g kg-1 ARA groups. Relative gene expression level of fatty acid binding protein 1 (fabp1) significantly increased in 4.60, 8.90, 12.50, and 15.70 g kg-1 ARA groups. However, the gene expression levels of fatty acid binding protein 4 (fabp4) as well as scavenger receptor class 2 (srb2) have not been influenced by dietary ARA levels. What is more, crabs fed diets with 4.60, 8.90, 12.50, and 15.70 g kg-1 ARA had a significantly higher expression level of carnitine palmitoyltransferase 1 (cpt1) than those fed diets with 0.40 and 2.50 g kg-1 ARA. In summary, optimum dietary ARA can promote growth, enhance antioxidant capacity, and improve health of mud crab juveniles. It also demonstrated that lipogenesis has been restrained with the increasing dietary ARA levels. These findings could provide theoretical guidance and reference for the lipid nutrition research as well as the development of the commercial diet in mud crab.

12.
Aquat Toxicol ; 240: 105967, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34555743

RESUMEN

While chromium (Cr) has been recognized as an essential nutrient for all animals, and dietary supplementation can be beneficial, it can also be toxic. The present study aimed to investigate the contrasting effects of dietary chromium in Pacific white shrimp Litopenaeus vannamei. Five experimental diets were formulated to contain Cr at levels of 0.82 (Cr0.82, unsupplemented diet), 1.01 (Cr1.01), 1.22 (Cu1.22), 1.43 (Cr1.43) and 1.63 (Cr1.63) mg/kg and were fed to shrimp for 8 weeks. Highest weight gain was recorded in shrimp fed the diet containing 1.22 mg/kg Cr. Shrimp fed the diet containing the highest level of Cr (1.63 mg/kg) showed the lowest weight gain and clear signs of oxidative stress and apoptosis as evidenced by higher levels of H2O2, malondialdehyde and 8-hydroxydeoxyguanosine, and expression of caspase 2, 3, 5, and lower contents of total and oxidized glutathione, and expression of Cu/Zn sod, cat, gpx, mt, bcl2. Chromium supplementation promoted glycolysis and inhibited gluconeogenesis as shown by increased activities of hexokinase, phosphofructokinase and pyruvate kinase, and reduced activity of phosphoenolpyruvate carboxykinase in shrimp fed the diet containing 1.43 mg/kg Cr. Shrimp fed the diet with 1.63 mg/kg Cr had lowest contents of crustacean hyperglycemic hormone and insulin like peptide in hemolymph. Expression of genes involved in insulin signaling pathway and glycose metabolism including insr, irs1, pik3ca, pdpk1, akt, acc1, gys, glut1, pk, hk were up-regulated, and foxO1, gsk-3ß, g6pc, pepck were down-regulated in shrimp fed the diets supplemented with Cr. This study demonstrated that optimum dietary supplementation of Cr had beneficial effects on glucose homeostasis and growth, whereas excess caused oxidative damage and impaired growth. The results contribute to our understanding of the biological functions of chromium in shrimp.


Asunto(s)
Penaeidae , Contaminantes Químicos del Agua , Alimentación Animal/análisis , Animales , Cromo/toxicidad , Dieta , Suplementos Dietéticos/análisis , Glucosa , Glucógeno Sintasa Quinasa 3 beta , Homeostasis , Peróxido de Hidrógeno , Inmunidad Innata , Estrés Oxidativo , Contaminantes Químicos del Agua/toxicidad
13.
Front Immunol ; 12: 694720, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248992

RESUMEN

The present study aimed to elucidate the mechanism of dietary betaine, as a lipid-lowering substance, on the regulation of lipid metabolism and inflammation in juvenile black seabream (Acanthopagrus schlegelii) fed a high fat diet. An 8-week feeding trial was conducted in black seabream with an initial weight of 8.39 ± 0.01g fed four isonitrogenous diets including Control, medium-fat diet (11%); HFD, high-fat diet (17%); and HFD supplemented with two levels (10 and 20 g/kg) of betaine, HFD+B1 and HFD+B2, respectively. SGR and FE in fish fed HFD+B2 were significantly higher than in fish fed HFD. Liver histology revealed that vacuolar fat droplets were smaller and fewer in bream fed HFD supplemented with betaine compared to fish fed HFD. Betaine promoted the mRNA and protein expression levels of silent information regulator 1 (Sirt1), up-regulated mRNA expression and protein content of lipid peroxisome proliferator-activated receptor alpha (pparα), and down-regulated mRNA expression and protein content of sterol regulatory element-binding protein-1(srebp-1). Furthermore, the mRNA expression levels of anti-inflammatory cytokines in liver and intestine were up-regulated, while nuclear factor kB (nf-kb) and pro-inflammatory cytokines were down-regulated by dietary betaine supplementation. Likewise, in fish that received lipopolysaccharide (LPS) to stimulate inflammatory responses, the expression levels of mRNAs of anti-inflammatory cytokines in liver, intestine and kidney were up-regulated in fish fed HFD supplemented with betaine compared with fish fed HFD, while nf-kb and pro-inflammatory cytokines were down-regulated. This is the first report to suggest that dietary betaine could be an effective feed additive to alleviate hepatic steatosis and attenuate inflammatory responses in black seabream fed a high fat diet by modulating the Sirt1/Srebp-1/Pparɑ pathway.


Asunto(s)
Betaína/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Hígado Graso/veterinaria , Enfermedades de los Peces/prevención & control , Proteínas de Peces/metabolismo , Inflamación/veterinaria , Hígado/enzimología , PPAR alfa/metabolismo , Dorada/metabolismo , Sirtuina 1/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Edad , Alimentación Animal , Animales , Citocinas/genética , Citocinas/metabolismo , Hígado Graso/enzimología , Hígado Graso/inmunología , Hígado Graso/prevención & control , Enfermedades de los Peces/enzimología , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/prevención & control , Hígado/inmunología , PPAR alfa/genética , Dorada/genética , Dorada/inmunología , Sirtuina 1/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
14.
Food Chem ; 361: 130160, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062457

RESUMEN

The quality of crustaceans' flesh has direct impact on consumers' purchase choices, with water environment and dietary nutrition being effective ways to regulate flesh quality. The aim of present study was to investigate the impacts of water salinity (low, 4 and medium, 23) and dietary lipid source (fish oil and soybean oil) on nutritional values, texture, taste and odor of flesh of mud crab. While water salinity had no significant influence on nutritional values of crab flesh, crabs fed soybean oil displayed significantly lower contents of amino acids and n-3 PUFAs in muscle. However, crabs reared at low salinity showed reduced flesh hardness, chewiness and gumminess likely related to altered myofiber structure, that impacted muscle texture. Furthermore, low salinity and dietary soybean oil weakened umami taste and aroma characteristics of crab flesh associated with decreased contents of free amino acids, flavor nucleotides, inorganic ions and odor active compounds in flesh.


Asunto(s)
Alimentación Animal , Acuicultura/métodos , Braquiuros/química , Mariscos/análisis , Aminoácidos/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Grasas de la Dieta/farmacología , Aceites de Pescado/farmacología , Calidad de los Alimentos , Valor Nutritivo , Salinidad , Proteínas de Mariscos/análisis , Aceite de Soja/farmacología , Gusto , Compuestos Orgánicos Volátiles/análisis
15.
Ecotoxicol Environ Saf ; 213: 112004, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33581488

RESUMEN

Salinity is one of the important factors affecting the physiological state of crustaceans in marine environments. Lipid plays major roles in energy supply and is main sources of essential fatty acids for membrane integrity, which is critical in adaptations to changes in salinity. Here we evaluated the effects of salinity (medium, 23 ppt and low, 4 ppt) and dietary lipid source (fish oil, FO and soybean oil, SO) on intestinal health of the marine crustacean mud crab Scylla paramamosain. The results indicated that low salinity and dietary SO (LSO group) significantly affected intestinal histomorphology, with a significant decrease of intestinal fold height and width as well as down-regulation of intestinal mRNA levels of tight junction genes compared to crab reared at medium salinity and fed FO diets (MFO group). Crabs reared at low salinity and fed SO showed an increased inflammatory response in intestine, which stimulated a physiological detoxification response together with apoptosis compared to crab in the MFO group. Low salinity and SO diets also could be responsible for multiply the pathogenic bacteria of Photobacterium and inhibit the beneficial bacteria of Firmicutes and Rhodobacteraceae in intestine, and act on a crucial impact on the development of intestinal microbial barrier disorders. The results of microbial function predictive analysis also support these inferences. The findings of the present study demonstrated that soybean oil as the main dietary lipid source could exacerbate the adverse effects of low salinity on intestinal health of mud crab, and provided evidence suggesting that dietary lipid source and fatty acid composition may play vital roles in intestinal health and the process of adaptation to environmental salinity in marine crustaceans.


Asunto(s)
Braquiuros/fisiología , Exposición Dietética/estadística & datos numéricos , Aceite de Soja , Adaptación Fisiológica/genética , Animales , Braquiuros/genética , Dieta , Intestinos , ARN Mensajero/genética , Salinidad
16.
Br J Nutr ; 125(8): 876-890, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32854790

RESUMEN

An 8-week feeding trial was conducted to evaluate the effects of dietary n-3 LC-PUFA levels on growth performance, tissue fatty acid profiles and relative expression of genes involved in the lipid metabolism of mud crab (Scylla paramamosain). Ten isonitrogenous diets were formulated to contain five n-3 LC-PUFA levels at 7 and 12 % dietary lipid levels. The highest weight gain and specific growth rate were observed in crabs fed the diets with 19·8 and 13·2 mg/g n-3 LC-PUFA at 7 and 12 % lipid, respectively. Moisture and lipid contents in hepatopancreas and muscle were significantly influenced by dietary n-3 LC-PUFA at the two lipid levels. The DHA, EPA, n-3 LC-PUFA contents and n-3:n-6 PUFA ratio in hepatopancreas and muscle significantly increased as dietary n-3 LC-PUFA levels increased at both lipid levels. The expression levels of -6 fatty acyl desaturase and acyl-CoA oxidase in hepatopancreas increased significantly, and expression levels of fatty acid synthase, carnitine palmitoyltransferase I and hormone-sensitive TAG lipase were down-regulated, with increased dietary n-3 LC-PUFA regardless of lipid level. Based on weight gain, n-3 LC-PUFA requirements of S. paramamosain were estimated to be 20·1 and 12·7 mg/g of diet at 7 and 12 % dietary lipid, respectively. Overall, dietary lipid level influenced lipid metabolism, and purified, high-lipid diets rich in palmitic acid reduced the n-3 LC-PUFA requirement of juvenile mud crab.


Asunto(s)
Braquiuros/crecimiento & desarrollo , Braquiuros/metabolismo , Grasas de la Dieta/administración & dosificación , Ácidos Grasos Omega-3/administración & dosificación , Metabolismo de los Lípidos , Alimentación Animal , Animales , Carnitina O-Palmitoiltransferasa/metabolismo , Regulación hacia Abajo , Ácido Graso Desaturasas/metabolismo , Ácido Graso Sintasas/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Hepatopáncreas/metabolismo , Músculos/metabolismo , Esterol Esterasa/metabolismo , Aumento de Peso
17.
Br J Nutr ; 124(7): 681-692, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32364086

RESUMEN

The aim of the present study was to investigate the effects of dietary Zn level on growth performance, Zn bioaccumulation, antioxidant capacity and innate immunity in juvenile mud crabs (Scylla paramamosain). Six semi-purified diets were formulated to contain dietary Zn levels of 44·5, 56·9, 68·5, 97·3, 155·6 or 254·7 mg/kg. Dietary Zn level significantly influenced percentage weight gain (PWG), with the highest observed in crabs fed the diet containing 97·3 mg/kg Zn. Tissue Zn concentrations significantly increased as dietary Zn levels increased from 44·5 to 254·7 mg/kg. Retention of Zn in hepatopancreas increased with dietary Zn levels up to 68·5 mg/kg and then significantly decreased. Moreover, inadequate dietary Zn (44·5 and 56·9 mg/kg) reduced antioxidation markers including total superoxide dismutase (SOD) and Cu/Zn SOD activities and total antioxidant level. Crabs fed the diet with 44·5 mg/kg Zn also showed significantly lower expression of genes involved in antioxidant status, such as Cu/Zn SOD, glutathione peroxidase, catalase and thioredoxin than those fed diets containing 68·5 and 97·3 mg/kg Zn. The highest activities of phenoloxidase and alkaline phosphatase were recorded in crabs fed the diets containing 68·5 and 97·3 mg/kg Zn. Expression levels of prophenoloxidase and toll-like receptor 2 were higher in crabs fed the 97·3 mg/kg Zn diet compared with crabs fed the other diets. Based on PWG alone, the optimal dietary Zn level was estimated to be 82·9 mg/kg, with 68·5 to 97·3 mg/kg recommended for maintaining optimal Zn bioaccumulation, oxidation resistance and innate immune response of juvenile mud crabs.


Asunto(s)
Bioacumulación/efectos de los fármacos , Braquiuros/crecimiento & desarrollo , Suplementos Dietéticos , Inmunidad Innata/efectos de los fármacos , Zinc/farmacología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Ingestión de Alimentos/fisiología
18.
Br J Nutr ; 124(8): 773-784, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-32410717

RESUMEN

The present study evaluated the effects of dietary Zn level on growth performance, serum and hepatopancreas metabolites, expression of genes involved in lipid and energy metabolism, and the signalling pathway of dietary Zn-induced lipolysis. Five isonitrogenous and isolipidic diets were formulated to contain different Zn levels: 46·4 (basal diet), 77·2, 87·0, 117·1 and 136·8 mg/kg, respectively. The results indicated that shrimp fed the diet containing Zn at 117·1 mg/kg had higher weight gain and specific growth rate, and the lowest feed intake and feed conversion rate, than shrimp fed the other diets. The deposition rate of Zn in whole body significantly decreased with increasing dietary Zn level. Dietary Zn prevented the accumulation of free radicals and improved antioxidant activities by increasing Cu/Zn superoxide dismutase and reducing malondialdehyde in hepatopancreas. Dietary Zn supplementation enhanced lipase activity and adiponectin, which could promote TAG breakdown and fatty acid oxidation and lead to reduced lipid in hepatopancreas. The mRNA expressions of ob-rb, adipor, camkkß, ampk, cd36, mcd and cpt1 involved in Zn-induced lipid catabolism were up-regulated, and the expressions of srebp, acc, fas and scd1 were down-regulated. The mRNA levels of SLC39 family genes (zip3, zip9, zip11 and zip14) in hepatopancreas were up-regulated with increasing dietary Zn level. The results demonstrated that dietary Zn level could significantly affect growth performance, tissue deposition of Zn, lipid metabolites and expression of genes involved in lipogenesis and lipolysis in Litopenaeus vannamei.


Asunto(s)
Alimentación Animal/análisis , Suplementos Dietéticos , Lipólisis/efectos de los fármacos , Penaeidae/crecimiento & desarrollo , Transducción de Señal/efectos de los fármacos , Zinc/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antioxidantes/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Dieta/métodos , Hepatopáncreas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Malondialdehído/metabolismo , Oxidación-Reducción/efectos de los fármacos , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo
19.
Fish Shellfish Immunol ; 101: 269-276, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32244030

RESUMEN

An 8-week feeding trial was conducted to evaluate the effect of replacement of fish meal (FM) with fish soluble meal (FSM) on growth performance, feed utilization and expression of genes involved in TOR signaling pathway for juvenile black sea bream (Acanthopagrus schlegelii). Six isonitrogenous (41%) and isolipidic diets were prepared to contain graded levels of FSM which replaced 0% (control diet), 10%, 20%, 30%, 40% and 60% protein from FM. Triplicate groups of 20 fish with initial weight 0.51 ± 0.01 g were fed with experimental diets twice daily to apparent satiation. The results showed significant differences in growth performance and feed utilization among all treatments, final body weight (FBW), percent weight gain (PWG), specific growth rate (SGR) and protein efficiency ratio (PER) significantly increased with dietary replacement levels of FM with FSM increasing from 0% to 40% (P < 0.05), PWG, SGR and PER were significantly reduced when replacement of FM with FSM further increased from 40% to 60%. Based on PWG against replacement levels of FM with FSM, A two-slope broken-line model analysis indicated that the optimal replacement of FM with FSM is to be 42.59%. Moreover, the lowest feed conversion ratio (FCR) was observed in fish fed the 40% FSM replacement diet. Muscle amino acid profile in muscle revealed that total essential amino acids, arginine and threonine were significantly influenced by replacement levels of FSM, while there was no significant difference in NEAA among all treatments. The hematological indices were not affected by the replacement levels of FM with FSM. The relative expression levels of irs-1, pi3k, akt, igf-1, s6k1 and tor were up-regulated when replacement levels of FM with FSM increased from 0% to 40%, and higher values were observed in fish fed with 40% FSM replacement diet compared to those fed the other diets. However, relative expression of 4e-bp2 was down-regulated when replacement levels of FM with FSM increased from 0% to 40% (P < 0.05). In summary, the results of present study indicated that FSM could be a viable alternative protein source for black sea bream, dietary FSM supplementation could improve growth and up-regulate the relative expression of irs-1, pi3k, akt, igf-1, s6k1 genes related to TOR signaling pathway in liver of juvenile black sea bream.


Asunto(s)
Proteínas en la Dieta/metabolismo , Proteínas de Peces/fisiología , Dorada/fisiología , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/fisiología , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Proteínas en la Dieta/administración & dosificación , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Distribución Aleatoria , Dorada/crecimiento & desarrollo , Dorada/inmunología
20.
J Hazard Mater ; 395: 122600, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32272279

RESUMEN

Copper is a widespread pollutant in marine environments, and marine animals can ingest large amounts of copper through the food chain. Here, an 8-week feeding trial was designed to investigate the effects of different dietary copper levels on coloration, copper bioaccumulation, stress response and oxidation resistance of juvenile mud crab Scylla paramamosain. The results indicated that crabs fed the diet with 162 mg/kg copper exhibited a dark-blue carapace and hemolymph. The accumulation of copper in tissues was positively correlated with the level of copper in feed. High/excess dietary copper (162 mg/kg) up-regulated the expression of stress response related genes, and reduced the expression/activities of anti-oxidation genes/enzymes. The activity of phenoloxidase decreased significantly when dietary copper level was 86-162 mg/kg, and the expression of hemocyanin was up-regulated in crab fed the diets with 28-162 mg/kg copper. Overall, the results of the present study indicated that high dietary copper led to parachrea in carapace and hemolymph of mud crab, and caused copper deposition abnormality in carapace and hepatopancreas. The data suggested that the toxic effects of dietary copper were concentration-dependent such that, excess dietary copper (162 mg/kg) had adverse impacts on oxidation resistance.


Asunto(s)
Braquiuros , Animales , Bioacumulación , Braquiuros/fisiología , Cobre/toxicidad , Dieta , Suplementos Dietéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA