Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mar Drugs ; 21(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36662174

RESUMEN

The antioxidant effect of probiotics has been widely recognized across the world, which is of great significance in food, medicine, and aquaculture. There are abundant marine microbial resources in the ocean, which provide a new space for humans to explore new probiotics. Previously, we reported on the anti-infective effects of Planococcus maritimu ML1206, a potential marine probiotic. The antioxidant activity of ML1206 in C. elegans was studied in this paper. The study showed that ML1206 could improve the ability of nematodes to resist oxidative stress and effectively prolong their lifespan. The results confirmed that ML1206 could significantly increase the activities of CAT and GSH-PX, and reduce the accumulation of reactive oxygen species (ROS) in nematodes under oxidative stress conditions. In addition, ML1206 promoted DAF-16 transfer to the nucleus and upregulated the expression of sod-3, hsp-16.2, and ctl-2, which are downstream antioxidant-related genes of DAF-16. Furthermore, the expression of the SOD-3::GFP and HSP-16.2::GFP was significantly higher in the transgenic strains fed with ML1206 than that in the control group fed with OP50, with or without stress. In summary, these findings suggest that ML1206 is a novel marine probiotic with an antioxidant function that stimulates nematodes to improve their defense abilities against oxidative stress and prolong the lifespan by regulating the translocation of FOXO/DAF-16. Therefore, ML1206 may be explored as a potential dietary supplement in aquaculture and for anti-aging and antioxidant purposes.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Humanos , Caenorhabditis elegans/metabolismo , Longevidad , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
2.
Microbiome ; 8(1): 53, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32299497

RESUMEN

BACKGROUND: Recent evidence has linked the gut microbiome to host behavior via the gut-brain axis [1-3]; however, the underlying mechanisms remain unexplored. Here, we determined the links between host genetics, the gut microbiome and memory using the genetically defined Collaborative Cross (CC) mouse cohort, complemented with microbiome and metabolomic analyses in conventional and germ-free (GF) mice. RESULTS: A genome-wide association analysis (GWAS) identified 715 of 76,080 single-nucleotide polymorphisms (SNPs) that were significantly associated with short-term memory using the passive avoidance model. The identified SNPs were enriched in genes known to be involved in learning and memory functions. By 16S rRNA gene sequencing of the gut microbial community in the same CC cohort, we identified specific microorganisms that were significantly correlated with longer latencies in our retention test, including a positive correlation with Lactobacillus. Inoculation of GF mice with individual species of Lactobacillus (L. reuteri F275, L. plantarum BDGP2 or L. brevis BDGP6) resulted in significantly improved memory compared to uninoculated or E. coli DH10B inoculated controls. Untargeted metabolomics analysis revealed significantly higher levels of several metabolites, including lactate, in the stools of Lactobacillus-colonized mice, when compared to GF control mice. Moreover, we demonstrate that dietary lactate treatment alone boosted memory in conventional mice. Mechanistically, we show that both inoculation with Lactobacillus or lactate treatment significantly increased the levels of the neurotransmitter, gamma-aminobutyric acid (GABA), in the hippocampus of the mice. CONCLUSION: Together, this study provides new evidence for a link between Lactobacillus and memory and our results open possible new avenues for treating memory impairment disorders using specific gut microbial inoculants and/or metabolites. Video Abstract.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped/genética , Memoria , Animales , Suplementos Dietéticos , Heces/química , Femenino , Estudio de Asociación del Genoma Completo , Vida Libre de Gérmenes , Lactatos/administración & dosificación , Lactobacillus , Masculino , Metabolómica , Ratones/genética , Ratones Endogámicos C57BL , Polimorfismo de Nucleótido Simple , ARN Ribosómico 16S , Ácido gamma-Aminobutírico/análisis
3.
J Nat Prod ; 83(4): 814-824, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32196343

RESUMEN

Glycyrrhiza uralensis (liquorice) is a well-known medicinal plant. Its roots and rhizomes are used as the popular Chinese herbal medicine Gan-Cao. An ethanol extract of the aerial parts of G. uralensis showed antidiabetic effects on db/db mice. It decreased the blood glucose level by 30.3% and increased the serum insulin level by 41.8% compared to the control group. Eighty-six phenolic compounds (1-86) were obtained from the aerial parts, including the new prenylated isoflavanones (1-5), isoflavans (6-9), and a 2-phenylbenzofuran (10). The structures were identified by NMR and HRESIMS data analyses, and the absolute configurations were established by comparing the calculated and experimental ECD spectroscopic data. Compounds 2, 6, and 10 inhibited PTP1B with IC50 values of 5.9, 6.7, and 5.3 µM, respectively. Compound 2 and the known compounds glycycoumarin (76) and glyurallin A (79) inhibited α-glucosidase with IC50 values of 20.1, 0.1, and 0.3 µM, respectively. Compound 4 at 10 µM increased the glucose uptake rate to 95% in an insulin resistance HepG2 cell model (p < 0.01).


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Glycyrrhiza uralensis/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Fenoles/química , Fenoles/farmacología , Componentes Aéreos de las Plantas/química , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Animales , Glucemia/análisis , Células Hep G2 , Humanos , Resistencia a la Insulina , Espectroscopía de Resonancia Magnética , Ratones , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray , alfa-Glucosidasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA