Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Pharmacol ; 15: 1309178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650631

RESUMEN

Isorhamnetin (ISO) is a phenolic compound belonging to flavonoid family, showcasing important in vitro pharmacological activities such as antitumor, anti-inflammation, and organ protection. ISO is predominantly extracted from Hippophae rhamnoides L. This plant is well-known in China and abroad because of its "medicinal and food homologous" characteristics. As a noteworthy natural drug candidate, ISO has received considerable attention in recent years owing to its low cost, wide availability, high efficacy, low toxicity, and minimal side effects. To comprehensively elucidate the multiple biological functions of ISO, particularly its antitumor activities and other pharmacological potentials, a literature search was conducted using electronic databases including Web of Science, PubMed, Google Scholar, and Scopus. This review primarily focuses on ISO's ethnopharmacology. By synthesizing the advancements made in existing research, it is found that the general effects of ISO involve a series of in vitro potentials, such as antitumor, protection of cardiovascular and cerebrovascular, anti-inflammation, antioxidant, and more. This review illustrates ISO's antitumor and other pharmacological potentials, providing a theoretical basis for further research and new drug development of ISO.

2.
Front Microbiol ; 14: 1237825, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795291

RESUMEN

Introduction: Antimicrobial resistance, especially the development of multidrug-resistant strains, is an urgent public health threat. Antibiotic adjuvants have been shown to improve the treatment of resistant bacterial infections. Methods: We verified that exogenous L-arginine promoted the killing effect of gentamicin against Salmonella in vitro and in vivo, and measured intracellular ATP, NADH, and PMF of bacteria. Gene expression was determined using real-time quantitative PCR. Results: This study found that alkaline arginine significantly increased gentamicin, tobramycin, kanamycin, and apramycin-mediated killing of drug-resistant Salmonella, including multidrug-resistant strains. Mechanistic studies showed that exogenous arginine was shown to increase the proton motive force, increasing the uptake of gentamicin and ultimately inducing bacterial cell death. Furthermore, in mouse infection model, arginine effectively improved gentamicin activity against Salmonella typhimurium. Discussion: These findings confirm that arginine is a highly effective and harmless aminoglycoside adjuvant and provide important evidence for its use in combination with antimicrobial agents to treat drug-resistant bacterial infections.

3.
Plant Cell Environ ; 46(6): 1921-1934, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36891914

RESUMEN

Auxins are a class of phytohormones with roles involved in the establishment and maintenance of the arbuscular mycorrhizal symbiosis (AMS). Auxin response factors (ARFs) and Auxin/Indole-acetic acids (AUX/IAAs), as two transcription factors of the auxin signaling pathway, coregulate the transcription of auxin response genes. However, the interrelation and regulatory mechanism of ARFs and AUX/IAAs in regulating AMS are still unclear. In this study, we found that the content of auxin in tomato roots increased sharply and revealed the importance of the auxin signaling pathway in the early stage of AMS. Notably, SlARF6 was found to play a negative role in AMF colonization. Silencing SlARF6 significantly increased the expression of AM-marker genes, as well as AMF-induced phosphorus uptake. SlIAA23 could interact with SlARF6 in vivo and in vitro, and promoted the AMS and phosphorus uptake. Interestingly, SlARF6 and SlIAA23 played a contrary role in strigolactone (SL) synthesis and accumulation in AMF-colonized roots of tomato plants. SlARF6 could directly bind to the AuxRE motif of the SlCCD8 promoter and inhibited its transcription, however, this effect was attenuated by SlIAA23 through interaction with SlARF6. Our results suggest that SlIAA23-SlARF6 coregulated tomato-AMS via an SL-dependent pathway, thus affecting phosphorus uptake in tomato plants.


Asunto(s)
Micorrizas , Solanum lycopersicum , Micorrizas/fisiología , Solanum lycopersicum/genética , Simbiosis/genética , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Fósforo/metabolismo
4.
Molecules ; 28(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36838788

RESUMEN

Physiological and metabolic profiles in tamarillo were investigated to reveal the molecular changes during fruit maturation. The firmness, ethylene production, soluble sugar contents, and metabolomic analysis were determined in tamarillo fruit at different maturity stages. The firmness of tamarillo fruit gradually decreased during fruit ripening with increasing fructose and glucose accumulation. The rapid increase in ethylene production was found in mature fruit. Based on the untargeted metabolomic analysis, we found that amino acids, phospholipids, monosaccharides, and vitamin-related metabolites were identified as being changed during ripening. The contents of malic acid and citric acid were significantly decreased in mature fruits. Metabolites involved in phenylpropanoid biosynthesis, phenylalanine metabolism, caffeine metabolism, monoterpenoid biosynthesis, and thiamine metabolism pathways showed high abundance in mature fruits. However, we also found that most of the mature-enhanced metabolites showed reduced abundance in over-mature fruits. These results reveal the molecular profiles during tamarillo fruit maturing and suggest tamarillos have potential benefits with high nutrition and health function.


Asunto(s)
Solanum , Solanum/química , Frutas/química , Etilenos/metabolismo , Metabolómica
5.
Nat Commun ; 13(1): 6690, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36335132

RESUMEN

The Allium genus is cultivated globally as vegetables, condiments, or medicinal plants and is characterized by large genomes and strong pungency. However, the genome evolution and genomic basis underlying their unique flavor formation remain poorly understood. Herein, we report an 11.27-Gb chromosome-scale genome assembly for bunching onion (A. fistulosum). The uneven bursts of long-terminal repeats contribute to diversity in genome constituents, and dispersed duplication events largely account for gene expansion in Allium genomes. The extensive duplication and differentiation of alliinase and lachrymatory factor synthase manifest as important evolutionary events during flavor formation in Allium crops. Furthermore, differential selective preference for flavor-related genes likely lead to the variations in isoalliin content in bunching onions. Moreover, we reveal that China is the origin and domestication center for bunching onions. Our findings provide insights into Allium genome evolution, flavor formation and domestication history and enable future genome-assisted breeding of important traits in these crops.


Asunto(s)
Allium , Allium/genética , Cebollas/genética , Cromosomas de las Plantas/genética , Fitomejoramiento , Evolución Molecular
6.
Front Microbiol ; 13: 1053330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419438

RESUMEN

The metabolic microenvironment of bacteria impacts drug efficacy. However, the metabolic mechanisms of drug-resistant Salmonella spp. remain largely unknown. This study characterized the metabolic mechanism of gentamicin-resistant Salmonella Choleraesuis and found that D-ribose increased the gentamicin-mediated killing of this bacteria. Non-targeted metabolomics of homologous gentamicin-susceptible Salmonella Choleraesuis (SCH-S) and gentamicin-resistant S. Choleraesuis (SCH-R) was performed using UHPLC-Q-TOF MS. The metabolic signature of SCH-R included disrupted central carbon metabolism and energy metabolism, along with dysregulated amino acid and nucleotide metabolism, vitamin and cofactor metabolism, and fatty acid synthesis. D-ribose, the most suppressed metabolite in SCH-R, was shown to strengthen gentamicin efficacy against SCH-R and a clinically isolated multidrug-resistant strain. This metabolite had a similar impact on Salmonella. Derby and Salmonella. Typhimurium. D-ribose activates central carbon metabolism including glycolysis, the pentose phosphate pathway (PPP), and the tricarboxylic acid cycle (TCA cycle), increases the abundance of NADH, polarizes the electron transport chain (ETC), and elevates the proton motive force (PMF) of cells, and induces drug uptake and cell death. These findings suggest that central carbon metabolism plays a critical role in the acquisition of gentamicin resistance by Salmonella, and that D-ribose may serve as an antibiotic adjuvant for gentamicin treatment of resistant bacterial infections.

7.
New Phytol ; 233(4): 1900-1914, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34839530

RESUMEN

Light quality affects mutualisms between plant roots and arbuscular mycorrhizal fungi (AMFs), which modify nutrient acquisition in plants. However, the mechanisms by which light systemically modulates root colonization by AMFs and phosphate uptake in roots remain unclear. We used a range of approaches, including grafting techniques, protein immunoblot analysis, electrophoretic mobility shift assay, chromatin immunoprecipitation, and dual-luciferase assays, to unveil the molecular basis of light signal transmission from shoot to root that mediates arbuscule development and phosphate uptake in tomato. The results show that shoot phytochrome B (phyB) triggers shoot-derived mobile ELONGATED HYPOCOTYL5 (HY5) protein accumulation in roots, and HY5 further positively regulates transcription of strigolactone (SL) synthetic genes, thus forming a shoot phyB-dependent systemic signaling pathway that regulates the synthesis and accumulation of SLs in roots. Further experiments with carotenoid cleavage dioxygenase 7 mutants and supplementary red light confirm that SLs are indispensable in the red-light-regulated mycorrhizal symbiosis in roots. Our results reveal a phyB-HY5-SLs systemic signaling cascade that facilitates mycorrhizal symbiosis and phosphate utilization in plants. The findings provide new prospects for the potential application of AMFs and light manipulation to effectively improve nutrient utilization and minimize the use of chemical fertilizers and associated pollution.


Asunto(s)
Micorrizas , Solanum lycopersicum , Compuestos Heterocíclicos con 3 Anillos , Lactonas/metabolismo , Solanum lycopersicum/genética , Micorrizas/fisiología , Raíces de Plantas/metabolismo , Simbiosis
8.
Plant J ; 102(5): 931-947, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31908046

RESUMEN

Phytohormone brassinosteroids (BRs) are essential for plant growth and development, but the mechanisms of BR-mediated pollen development remain largely unknown. In this study, we show that pollen viability, pollen germination and seed number decreased in the BR-deficient mutant d^im , which has a lesion in the BR biosynthetic gene DWARF (DWF), and in the bzr1 mutant, which is deficient in BR signaling regulator BRASSINAZOLE RESISTANT 1 (BZR1), compared with those in wild-type plants, whereas plants overexpressing DWF or BZR1 exhibited the opposite effects. Loss or gain of function in the DWF or BZR1 genes altered the timing of reactive oxygen species (ROS) production and programmed cell death (PCD) in tapetal cells, resulting in delayed or premature tapetal degeneration, respectively. Further analysis revealed that BZR1 could directly bind to the promoter of RESPIRATORY BURST OXIDASE HOMOLOG 1 (RBOH1), and that RBOH1-mediated ROS promote pollen and seed development by triggering PCD and tapetal cell degradation. In contrast, the suppression of RBOH1 compromised BR signaling-mediated ROS production and pollen development. These findings provide strong evidence that BZR1-dependent ROS production plays a critical role in the BR-mediated regulation of tapetal cell degeneration and pollen development in Solanum lycopersicum (tomato) plants.


Asunto(s)
Polen/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Solanum lycopersicum/metabolismo , Apoptosis/genética , Apoptosis/fisiología , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología
9.
Oncogene ; 38(32): 6065-6081, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31273338

RESUMEN

Long non-coding RNA (lncRNA) plays an important role in malignant tumor occurrence, development, and chemoresistance, but the mechanism of how they affect nasopharyngeal cancer (NPC) paclitaxel chemosensitivity is unclear. In this study, lncRNA array of CNE-1 and HNE-2 paclitaxel-resistant cells and their parental strains revealed that the paclitaxel-resistant strains had significantly lower MRVI1-AS1 (murine retrovirus integration site 1 homolog antisense RNA 1) expression than the parental strains, and that MRVI1-AS1 overexpression in vitro and in vivo increased paclitaxel chemosensitivity. Further, MRVI1-AS1 upregulated ATF3 (activating transcription factor 3) by simultaneously inhibiting miR-513a-5p (microRNA-513a-5p) and miR-27b-3p expression levels to increase NPC paclitaxel chemosensitivity. Chromatin immunoprecipitation and quantitative real-time PCR showed that ATF3 could feed-back MRVI1-AS1 regulation positively. Furthermore, MRVI1-AS1 and ATF3 could form a positive feedback loop, which promoted the expression of RASSF1 (Ras association domain family member 1), a Hippo-TAZ (tafazzin) signaling pathway regulatory factor, thereby inhibiting TAZ expression. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide) assay and flow cytometry showed that the decreased TAZ increased NPC cell paclitaxel chemosensitivity. Overall, the results indicate that the MRVI1-AS1/ATF3 signaling pathway can increase NPC paclitaxel chemosensitivity by modulating the Hippo-TAZ signaling pathway. Therefore, targeting the loop may be a new NPC treatment strategy.


Asunto(s)
Factor de Transcripción Activador 3/genética , Proteínas de la Membrana/genética , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Paclitaxel/uso terapéutico , Fosfoproteínas/genética , ARN sin Sentido/fisiología , Células A549 , Factor de Transcripción Activador 3/metabolismo , Aciltransferasas , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Vía de Señalización Hippo , Humanos , Células MCF-7 , Proteínas de la Membrana/antagonistas & inhibidores , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Fosfoproteínas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
New Phytol ; 224(1): 106-116, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31087385

RESUMEN

Elevated atmospheric carbon dioxide (eCO2 ) concentrations promote symbiosis between roots and arbuscular mycorrhizal fungi (AMF), modifying plant nutrient acquisition and cycling of carbon, nitrogen and phosphate. However, the biological mechanisms by which plants transmit aerial eCO2 cues to roots, to alter the symbiotic associations remain unknown. We used a range of interdisciplinary approaches, including gene silencing, grafting, transmission electron microscopy, liquid chromatography tandem mass spectrometry (LC-MS/MS), biochemical methodologies and gene transcript analysis to explore the complexities of environmental signal transmission from the point of perception in the leaves at the apex to the roots. Here we show that eCO2 triggers apoplastic hydrogen peroxide (H2 O2 )-dependent auxin production in tomato shoots followed by systemic signaling that results in strigolactone biosynthesis in the roots. This redox-auxin-strigolactone systemic signaling cascade facilitates eCO2 -induced AMF symbiosis and phosphate utilization. Our results challenge the current paradigm of eCO2 effects on AMF and provide new insights into potential targets for manipulation of AMF symbiosis for high nutrient utilization under future climate change scenarios.


Asunto(s)
Dióxido de Carbono/farmacología , Micorrizas/fisiología , Transducción de Señal , Solanum lycopersicum/microbiología , Simbiosis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Modelos Biológicos , Micorrizas/efectos de los fármacos , Fósforo/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal/efectos de los fármacos
11.
PLoS One ; 11(10): e0164140, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27711182

RESUMEN

MiRNAs function in post-transcriptional regulation of gene expression and play very important roles in plant development. Lonicera japonica is one of the important medicinal plants in China. However, few studies on the discovery of conserved and novel miRNAs from L. japonica were reported. In this study, we employed deep sequencing technology to identify miRNAs in leaf and flower tissues of L. japonica. A total of 22.97 million clean reads from flower and leaf tissues were obtained, which generated 146 conserved miRNAs distributed in 20 families and 110 novel miRNAs. Accordingly, 72 differentially expressed miRNAs (P≤0.001) between leaves and flowers and their potential target genes were identified and validated. The qRT-PCR validation showed that majority of the differentially expressed miRNAs showed significant tissue-specific expression in L. japonica. Furthermore, the miRNA-mRNA and mRNA-mRNA regulatory networks were constructed using Cytoscape software. Taken together, this study identified a large number of miRNAs and target genes in L. japonica, which not only provides the first global miRNA expression profiles, but also sheds light on functional genomics research on L. japonica in the future.


Asunto(s)
Genes de Plantas/genética , Genómica , Lonicera/genética , MicroARNs/genética , Secuencia Conservada , Flores/genética , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Hojas de la Planta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
12.
J Pineal Res ; 61(3): 291-302, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27264631

RESUMEN

Both selenium (Se) and melatonin reduce cadmium (Cd) uptake and mitigate Cd toxicity in plants. However, the relationship between Se and melatonin in Cd detoxification remains unclear. In this study, we investigated the influence of three forms of Se (selenocysteine, sodium selenite, and sodium selenate) on the biosynthesis of melatonin and the tolerance against Cd in tomato plants. Pretreatment with different forms of Se significantly induced the biosynthesis of melatonin and its precursors (tryptophan, tryptamine, and serotonin); selenocysteine had the most marked effect on melatonin biosynthesis. Furthermore, Se and melatonin supplements significantly increased plant Cd tolerance as evidenced by decreased growth inhibition, photoinhibition, and electrolyte leakage (EL). Se-induced Cd tolerance was compromised in melatonin-deficient plants following tryptophan decarboxylase (TDC) gene silencing. Se treatment increased the levels of glutathione (GSH) and phytochelatins (PCs), as well as the expression of GSH and PC biosynthetic genes in nonsilenced plants, but the effects of Se were compromised in TDC-silenced plants under Cd stress. In addition, Se and melatonin supplements reduced Cd content in leaves of nonsilenced plants, but Se-induced reduction in Cd content was compromised in leaves of TDC-silenced plants. Taken together, our results indicate that melatonin is involved in Se-induced Cd tolerance via the regulation of Cd detoxification.


Asunto(s)
Cadmio/farmacología , Melatonina/metabolismo , Ácido Selénico/farmacología , Selenocisteína/farmacocinética , Selenito de Sodio/farmacología , Solanum lycopersicum/metabolismo , Estrés Fisiológico/efectos de los fármacos , Descarboxilasas de Aminoácido-L-Aromático/biosíntesis , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Proteínas de Plantas/biosíntesis , Selenio/farmacología
13.
Front Plant Sci ; 6: 601, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26322055

RESUMEN

Melatonin is a ubiquitous signal molecule, playing crucial roles in plant growth and stress tolerance. Recently, toxic metal cadmium (Cd) has been reported to regulate melatonin content in rice; however, the function of melatonin under Cd stress, particularly in higher plants, still remains elusive. Here, we show that optimal dose of melatonin could effectively ameliorate Cd-induced phytotoxicity in tomato. The contents of Cd and melatonin were gradually increased over time under Cd stress. However, such increase in endogenous melatonin was incapable to reverse detrimental effects of Cd. Meanwhile, supplementation with melatonin conferred Cd tolerance as evident by plant biomass and photosynthesis. In addition to notable increase in antioxidant enzymes activity, melatonin-induced Cd stress mitigation was closely associated with enhanced H(+)-ATPase activity and the contents of glutathione and phytochelatins. Although exogenous melatonin had no effect on root Cd content, it significantly reduced leaf Cd content, indicating its role in Cd transport. Analysis of Cd in different subcellular compartments revealed that melatonin increased cell wall and vacuolar fractions of Cd. Our results suggest that melatonin-induced enhancements in antioxidant potential, phytochelatins biosynthesis and subsequent Cd sequestration might play a critical role in plant tolerance to Cd. Such a mechanism may have potential implication in safe food production.

14.
Curr Protein Pept Sci ; 7(5): 459-64, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17073696

RESUMEN

The G-protein coupled receptor (GPCR) superfamily is one of the most important drug target classes for the pharmaceutical industry. The completion of the human genome project has revealed that there are more than 300 potential GPCR targets of interest. The identification of their natural ligands can gain significant insights into regulatory mechanisms of cellular signaling networks and provide unprecedented opportunities for drug discovery. Much effort has been directed towards the GPCR ligand discovery study by both academic institutions and pharmaceutical industries. However, the endogenous ligands still remain unknown for about 150 GPCRs in the human genome. It is necessary to develop new strategies to predict candidate ligands for these so-called orphan receptors. Computational techniques are playing an increasingly important role in finding and validating novel ligands for orphan GPCRs (oGPCRs). In this paper, we focus on recent development in applying bioinformatics approaches for the discovery of GPCR ligands. In addition, some of the data resources for ligand identification are also provided.


Asunto(s)
Biología Computacional/métodos , Evaluación Preclínica de Medicamentos/métodos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Ligandos , Unión Proteica
15.
Mediators Inflamm ; 2006(5): 92642, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17392580

RESUMEN

Inflammatory mediators play a critical role in ulcerative colitis immune and inflammatory processes. The aim of the study was to investigate the effects of Ginkgo biloba extract on inflammatory mediators (SOD, MDA, TNF-alpha, NF-kappaBp65, IL-6) in TNBS-induced colitis in rats. Colitis in rats was induced by colonic administration with 2,4,6-trinitrobenzene sulfonic acid (TNBS, 150 mg/kg). EGB in doses of (50, 100, 200 mg/kg) was administered for 4 weeks to protect colitis. The results showed that EGB could significantly ameliorate macroscopic and histological damage, evidently elevate the activities of SOD and reduce the contents of MDA, inhibit the protein and mRNA expressions of TNF-alpha, NF-kappaBp65, and IL-6 in the colon tissues of experimental colitis in a dose-dependent manner compared with the model group. We concluded that the probable mechanisms of EGB ameliorated inflammatory injury in TNBS-induced colitis in rats by its modulation of inflammatory mediators and antioxidation.


Asunto(s)
Colitis/tratamiento farmacológico , Colitis/metabolismo , Ginkgo biloba , Mediadores de Inflamación/metabolismo , Fitoterapia , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Secuencia de Bases , Colitis/genética , Colitis/patología , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Malondialdehído/metabolismo , Mesalamina/administración & dosificación , Mesalamina/farmacología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo , Ácido Trinitrobencenosulfónico/toxicidad , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA